Shoppers in mathematics - formulas, mathematical symbols

Shoppers in mathematics - formulas, mathematical symbols

Collection of cheat sheets in mathematics.

Mathematics cheat sheets - mathematical symbols

Mathematics cheat sheets - mathematical symbols:

  • The main mathematical symbols
Symbol The name of the symbol Meaning / definition example
= equal sign equality 5 = 2 + 3
5 equal 2 + 3
the sign is not equal inequality 5 ≠ 4
5 is not equal to 4
about equal approximation sin (0.01) ≈ 0.01,
x ≈  y means that x approximately equal y
/ strict inequality more than 5/ 4
5 more than 4
< strict inequality less than 4 ‹5
4 less than 5
inequality more or equal 5 ≥ 4,
x ≥  y means that x more or equal y
inequality less or equal 4 ≤ 5,
x ≤ y means that x less or equal y
() round brackets first calculate the expression inside 2 × (3 + 5) \u003d 16
[] brackets first calculate the expression inside [(1 + 2) × (1 + 5)] \u003d 18
+ plus sign addition 1 + 1 = 2
minus sign subtraction 2 — 1 = 1
± plus - minus operations plus and minus 3 ± 5 \u003d 8 or -2
± minus plus both minus and plus surgery 3 ∓ 5 \u003d -2 or 8
* star multiplication 2 * 3 = 6
× a sign of times multiplication 2 × 3 \u003d 6
the point of multiplication multiplication 2 ⋅ 3 = 6
÷ division division 6 ÷ 2 \u003d 3
/ the dividing oblique feature division 6/2 = 3
horizontal line division / fraction
maud according to the module calculation of the remainder 7 mod 2 \u003d 1
. period decimal point, tenant 2,56 = 2 + 56/100
a b strength exponent 2 3= 8
a ^ b carriage exponent 2 ^ 3 \u003d 8
√  a square root

√  and ⋅ √  a \u003d a

√ 9 \u003d ± 3
3 √ a cubic root 3 √ A ⋅3 √ A ⋅3 √ A \u003d A 3 √ 8 \u003d 2
4 √ a the fourth root 4 √ A ⋅4 √ A ⋅4 √ A ⋅4 √ A \u003d A 4 √ 16 \u003d ± 2
p √ a nth degree root (radical) for n. \u003d 3, n. √ 8 \u003d 2
% percent 1% = 1/100 10% × 30 \u003d 3
pMILLE 1 ‰ \u003d 1/1000 \u003d 0.1% 10 ‰ × 30 \u003d 0.3
pPM for a million 1 parts per million \u003d 1/1000000 10 parts per million × 30 \u003d 0.0003
pPB per billion 1PPB \u003d 1/1000000000 10PPB × 30 \u003d 3 × 10-7
pPT to trillion 1PPT \u003d 10 -12 10PPT × 30 \u003d 3 × 10-10

Symbols of geometry

Symbol The name of the symbol Meaning / definition example
corner formed by two rays ∠ABC \u003d 30 °
measured angle ABC \u003d 30 °
spherical angle AOB \u003d 30 °
right angle \u003d 90 ° α \u003d 90 °
° degree 1 turnover \u003d 360 ° α \u003d 60 °
grad degree 1 turnover \u003d 360 degrees α \u003d 60 degrees
prime Minister angular minute, 1 ° \u003d 60 ′ α \u003d 60 ° 59 ′
double stroke corner second, 1 ′ \u003d 60 ″ α \u003d 60 ° 59′59 ″
line endless line
AB line segment line from point A to point b
ray line that starts from point A
arc arc from point a to point b \u003d 60 °
perpendicular perpendicular lines (angle 90 °) AC ⊥ BC
parallel parallel lines Ab ∥ CD
corresponds the equivalence of geometric shapes and sizes ∆ABC≅ ∆XYZ
~ similarity the same forms, different sizes ∆ABC ~ ∆XYZ
Δ triangle the shape of the triangle ΔABC≅ δbcd
x —  u | distance distance between points X and Y x —  u | \u003d 5
π constant pi π \u003d 3.141592654 ... The ratio of the length of the circle to the diameter of the circle. c. =  π ⋅  d. \u003d 2⋅ π ⋅  r
glad radians radiana angular unit 360 ° \u003d 2π Rad
c. radians radiana angular unit 360 ° \u003d 2π with
grad gradians / Gonons corner block 360 ° \u003d 400 degrees
g gradians / Gonons corner block 360 ° \u003d 400 g
  • Symbols of algebra
Symbol The name of the symbol Meaning / definition example
x variable x unknown meaning for searching when 2 x \u003d 4, then x \u003d 2
equivalence identically
equal by definition equal by definition
\u003d equal by definition equal by definition
~ about equal weak approach 11 ~ 10
about equal approximation sin (0.01) ≈ 0.01
proportionally proportionally

y ∝  x, when y =  kX, K constant

lemniscat a symbol of infinity
much less than much less than 1 1000000 ≪
much more than much more than 1000000 ≫ 1
() round brackets first calculate the expression inside 2 * (3 + 5) = 16
[] brackets first calculate the expression inside [(1 + 2) * (1 + 5)] = 18
{} suspenders kit
⌊  x ⌋ floor brackets rounds the number to a smaller whole ⌊4.3⌋ = 4
⌈  x ⌉ ceiling brackets rounds the number to the upper whole ⌈4.3⌉ = 5
x ! exclamation point factorial 4! = 1 * 2 * 3 * 4 = 24
x | vertical stripes absolute value | -5 | = 5
f (  x ) function X displays values \u200b\u200bx in f (x) e (  x ) \u003d 3 x +5
and ∘  g ) functional composition e ∘  g ) (  x ) =  e (  g (  x )) f (  x ) \u003d 3 x ,  g (  x ) =  x -1 ⇒ ( f ∘  g ) (  x ) \u003d 3 ( x -one)
a ,  b ) open interval a ,  b. ) = {  x |  a <  x <  b } x ∈ (2.6)
a ,  b ] closed interval a ,  b. ] = {  x |  a ≤  x ≤  b } x ∈ [2.6]
delta change / difference ∆  t =  t1 —  t0
discriminant Δ =  b.2 - four alternating current
sigma summation - the sum of all values \u200b\u200bin the range Σ  x i \u003d xone+ x2+ ... + xp
∑∑ sigma double summation
title pi product - a work of all values \u200b\u200bin the series range ∏  x i \u003d xone∙ x2∙ ... ∙ xn.
e e constant/ Euler's number e \u003d 2.718281828 ... e \u003d lim (1 + 1 / x )  x ,  x → ∞
γ Permanent Euler-Masqueeroni γ \u003d 0.5772156649 ...
φ Golden section golden section constant
π constant pi π \u003d 3.141592654 ... The ratio of the length of the circle to the diameter of the circle. c. =  π ⋅  d. \u003d 2⋅ π ⋅  r
  • Symbols of linear algebra
Symbol The name of the symbol Meaning / definition example
· dot scalar product a ·  b
× cross vector product a ×  b
BUT ⊗  B tensor work tensor work a and b BUT ⊗  B
internal product
[] brackets matrix of numbers
() round brackets matrix of numbers
BUT | determinant the determinant of the matrix a
det ( BUT ) determinant the determinant of the matrix a
||  x || double vertical stripes norm
BUTT transpose the matrix is \u200b\u200btransparent AT )  iJ = (  A )  ji
A Hermitova matrix the matrix conjugated transparent A )  iJ = (  A )  ji
BUT* Hermitova matrix the matrix conjugated transparent A* )  iJ = (  A )  ji
BUT-1 inverse matrix AA-1 =  I
rank ( BUT ) the rank of matrix the rank of matrix a rank ( BUT ) \u003d 3
dull ( U ) measurement the dimension of the matrix a dim ( U ) \u003d 3
  • Symbols of probability and statistics
Symbol The name of the symbol Meaning / definition example
P. (  BUT ) probability function the probability of event a P. (  A ) \u003d 0.5
P. (  A ⋂  B. ) the probability of intersection of events the likelihood that the events a and b P. (  A ⋂  B. ) \u003d 0.5
P. (  A ⋃  B. ) the probability of combining events the likelihood that the events a or b P. (  A ⋃  B. ) \u003d 0.5
P. (  A |  B. ) the function of conditional probability the probability of event a this event B has occurred P. (  A | B. ) \u003d 0.3
f (  x ) probability density function (PDF) P. (  a ≤  x ≤  b. ) =  ∫ f (  x )  dX
F (  x ) cumulative distribution function (CDF) F (  x ) =  R (  X ≤  x )
μ The average population the average value of the totality μ = 10
E. (  X ) expected value the expected value of the random value X E. (  X ) \u003d 10
E. (  X | Y ) conditional expectation the expected value of the random value X, taking into account Y E. (  X | Y \u003d 2 ) \u003d 5
var (  X ) deviation dispersion of random size X var (  X ) \u003d 4
σ  2 deviation a dispersion of the set of set σ  2 \u003d 4
sTD (  X ) standard deviation standard deviation of random value X sTD (  X ) \u003d 2
σ  X standard deviation the value of the standard deviation of the random value X σ  X  2
median the average value of the random value X
cOV (  X ,  Y ) coaring coarration of random values \u200b\u200bX and Y cOV (  X, Y. ) \u003d 4
corr (  X ,  Y ) correlation correlation of random values \u200b\u200bX and Y corr (  X, Y. ) \u003d 0.6
ρ X ,  Y correlation correlation of random values \u200b\u200bX and Y ρ X ,  Y \u003d 0.6
summation summation - the sum of all values \u200b\u200bin the range
∑∑ double summation double summation
Mon Mode the value that is most often found in the population
Mr the average range Mr = (  x max +  x min ) / 2
Mkr median sample half of the population below this value
Q. 1 nizhny / First Road 25% of the population below this value
2 quarter mediana / second ten 50% of the population below this value \u003d median sample
3 quarter upper / third ten 75% of the population below this value
x selective average arithmetic mean / average x \u003d (2 + 5 + 9) / 3 \u003d 5,333
with2 selective dispersion evaluator of the dispension of the sample of the population s.2 \u003d 4
with standard sampling deviation Assessment of a standard deviation of the sample of the population s. \u003d 2
z x standard assessment z x = (  x - x) / s. x
X ~ distribution X distribution of random value X X ~  N. (0.3)
N. (  μ ,  σ 2 ) normal distribution gAUSOVO Distribution X ~  N. (0.3)
U (  a ,  b ) uniform distribution equal probability in the range A, b X ~  U (0.3)
ehr (λ) exponential distribution f (  x )  \u003d λE—  λx ,  x ≥0
gamma (  c. , λ) gamma distribution f (  x )  \u003d λ cxc-1e.—  λx / Γ (  c. ),  x ≥0
χ  2 (  to ) distribution of chi-square f (  x )  \u003d x k. / 2-1e.—  x / 2 / (2 k / 2 Γ (  k. / 2))
F (  k.1 , k2 ) F Distribution
Basket (  n. ,  p. ) binomial distribution f (  k. )  n. C. k. P. k. (one -p )  nK
Poisson (λ) poisson distribution e (  To )  sign equals λ  To e—  λ /  To !
Goom (  p. ) geometric distribution f (  k. )  \u003d p (one -p )  k.
Hg (  N. ,  K. ,  n. ) hypergeometric distribution
Berne (  p. ) Distribution of Bernoulli
  • Symbols of calculus and analysis
Symbol The name of the symbol Meaning / definition example
limit the limit value of the function
ε epsilon is a very small number close to zero ε →  0
e e constant/ Euler's number e \u003d 2.718281828 ... e \u003d lim (1 + 1 / x )  x ,  x → ∞
y ‘ derivative derivative - designation of Lagrange (3 x3 ) ‘\u003d 9 x2
u » the second derivative derivative from the derivative (3 x3 ) "\u003d 18 x
up ) n-I derivative n times conclusion (3 x3 )  (3) \u003d 18
derivative derivative - designation of Leibniz d. (3 x3 ) /  dX \u003d 9 x2
the second derivative derivative from the derivative d.2 (3 x3 ) /  dX2 \u003d 18 x
n-I derivative n times conclusion
 Point (y) time derivative time derivative - Newton's designation
second time derivative derivative from the derivative
D. x y derivative derivative - designation of Euler
D. x2 u the second derivative derivative from the derivative
private derivative ∂ (  x2 +  y2 ) / ∂  x \u003d 2 x
integral opposite to origin ∫  f (x) dx
∫∫ double integral integrating the function of two variables ∫∫  f (x, y) dxdy
∫∫∫ triple integral integration of function 3 variables ∫∫∫  f (x, y, z) dxdydz
closed circuit / linear integral
integral with a closed surface
integral of a closed volume
a ,  b ] closed interval a ,  b. ] = {  x |  a ≤  x ≤  b }
a ,  b ) open interval a ,  b. ) = {  x |  a <  x <  b }
i imaginary unit i ≡ √ -1 g \u003d 3 + 2 i
z * comprehensively conjugated z =  a +  bI →  z * =  a —  bI g * \u003d 3 - 2 i
z comprehensively conjugated z =  a +  bI →  z =  a —  bI g \u003d 3 - 2 I
Re ( z ) actual part of the complex number z =  a +  bI → Re ( z ) =  a Re (3 - 2 i ) \u003d 3
IM ( z ) imaginary part of the complex z =  a +  bI → IM ( z ) =  b. IM (3 - 2 i ) \u003d -2
z | absolute value / value of a complex number z | = |  a +  bi | = √ (  a2 +  b.2 ) | 3 - 2 i | \u003d √13
arg ( z ) the argument of the integrated number Radius angle in a complex plane arg (3 + 2 i ) \u003d 33.7 °
nabla / del gradient operator / divergence ∇  e (  x ,  u ,  g )
vector
a single vector
x *  u convolution u (  t ) =  x (  t ) *  h (  t )
Laplace transformation F (  s. ) =  f (  t )}
fourier transformation X (  ω ) =  f (  t )}
δ delta-function
lemniscat a symbol of infinity

Mathematics cheat sheet for primary school

Mathematics cheat sheet for primary school:

S \u003d A*B

a \u003d S: B

b \u003d s: a

S-plane

a-day

b-Shirina

Finding the area of \u200b\u200ba rectangle

P \u003d (a+b)*2

P \u003d a*2+b*2

P-perimeter

a-day

b-Shirina

Finding the perimeter of a rectangle

P \u003d a*4

P-perimeter

a-wrapping

Finding the perimeter of the square

a \u003d b*c+r,

r ‹B‹ Span \u003d "› ›

a-dilapidated

b-leader

c-private

r-Statter

Division with the remainder

S \u003d V*T

v \u003d s: t

t \u003d s: v

S-condition

v-ski

t-time

The formula of the path

C \u003d c*K

C \u003d C: K

K \u003d C: C

C-cost

a-price

n-Caulism

Formula of value

V ∙ t \u003d s

S: t \u003d v

S: v \u003d t

V -ski

t -time

S-condition

Traffic

a + b \u003d b + a

a*b \u003d b*a

The amount (work) does not change from the rearrangement of terms (multipliers)

Avoiding property

(a+b)+c \u003d a+(b+c)

(a*b)*c \u003d a*(b*c)

Two neighboring terms (multipliers) can be replaced by their amount (work)

Combined property

  • Multiplication table from 1 to 20
× 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
3 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
4 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
6 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120
7 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140
8 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160
9 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 180
10 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
11 11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209 220
12 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240
13 13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221 234 247 260
14 14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 224 238 252 266 280
15 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300
16 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320
17 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 272 289 306 323 340
18 18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306 324 342 360
19 19 38 57 76 95 114 133 152 171 190 209 228 247 266 285 304 323 342 361 380
20 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

Units of length

1 cm \u003d 10 mm

1 dm \u003d 10 cm

1 dm \u003d 100 mm

1 m \u003d 100 cm

1 m \u003d 10 dm

1 m \u003d 1,000 mm

1 km \u003d 1,000 m

 

Units of the square

1 cm2 \u003d 100 mm2

1 dm2 \u003d 100 cm2

1 dm2 \u003d 10,000 mm2             

1m2 \u003d 10,000 cm2

1m2 \u003d 100 dm2

1 km2 \u003d 1,000,000 m2

1 a \u003d 100 m2

1 ha \u003d 100 A

1 km2 \u003d 100 hectares

1 km2 \u003d 10,000 a

1 ha \u003d 10,000 m2

                               

Units of mass

1 kg \u003d 1,000 g

1 c \u003d 100 kg

1 c \u003d 100,000 g

1 t \u003d 1,000 kg

1 t \u003d 10 c

Units of time

1 min \u003d 60 sec

1 h \u003d 60 min

                               1 h \u003d 3 600 sec

1 day. \u003d 24 hours

1 year \u003d 12 months.

1 century \u003d 100 years

                                 

 Memo.

                             The term terminals  sum            

            X + 3 =7 

To findunknown terms necessary,

    subtract from the amount famous term.

Minuend  subtracted difference

            X - 2 \u003d 1

To findunknown reduced,

necessary to the difference add the subtracted.              

Minuend  subtracted difference

                                5 -X \u003d 4

To findunknown subtracted,

necessaryfrom the reduced deduction of the difference.

                 

                     Memo.

                             The term terminals  sum         

            X + 3 =7 

To findunknown terms necessary,

    subtract from the amount famous term.

                    Minuend subtracted difference

            X - 2 \u003d 1

To findunknown reduced,

necessary to the difference add the subtracted.              

                     Minuend  subtracted difference

                                5 -X \u003d 4

To findunknown subtracted,

necessaryfrom the reduced deduction of the difference.

                    Memo.

The term terminals  sum             

            X + 3 =7 

To findunknown terms necessary,

    subtract from the amount famous term.

Minuend  subtracted difference

            X - 2 \u003d 1

To findunknown reduced,

necessary to the difference add the subtracted.              

                     Minuend  subtracted difference

                                5 -X \u003d 4

To findunknown subtracted,

necessaryfrom the reduced deduction of the difference.

                   

                       Memo.

                             The term terminals  sum             

            X + 3 =7 

To findunknown terms necessary,

    subtract from the amount famous term.

                    Minuend  subtracted difference

            X - 2 \u003d 1

To findunknown reduced,

necessary to the difference add the subtracted.              

                     Minuend subtracted difference

                                5 -X \u003d 4

To findunknown subtracted, necessaryfrom the reduced deduction of the difference.

                    Memo.

The multiplier multiplier   work       

            X ∙ 4 =20 

To findunknown multiplier necessary,divide the work into a well -known multiplier.

                          Dividend    the divider is private

            X 2 \u003d 9

To findunknown divisible,

necessary private multiply by divider.              

                            Dividend      the divider is private

                                36: X \u003d 4

To findunknown divider,

necessarydivided into private.

                           Memo.

                      The multiplier multiplier   work           

            X ∙ 4 =20 

To findunknown multiplier necessary,divide the work into a well -known multiplier.

Dividend    the divider is private

            X 2 \u003d 9

To findunknown divisible,

necessary private multiply by divider.              

Dividend      the divider is private

                                36: X \u003d 4

To findunknown divider,

necessarydivided into private.           

           

                    Memo.

The multiplier multiplier   work         

            X ∙ 4 =20 

To findunknown multiplier necessary,divide the work into a well -known multiplier.

Dividend    the divider is private

            X 2 \u003d 9

To findunknown divisible,

necessary private multiply by divider.              

                            Dividend     The divider is private

                                36: X \u003d 4

To findunknown divider,

necessarydivided into private.

           

                   

                         Memo.

                      The multiplier multiplier   work           

            X ∙ 4 =20 

To findunknown multiplier necessary,divide the work into a well -known multiplier.

                          Dividend   the divider is private

            X 2 \u003d 9

To findunknown divisible,

necessary private multiply by divider.              

Dividend      the divider is private

                                36: X \u003d 4

To findunknown divider,

necessarydivided into private.    

Properties of addition

Properties of subtraction

1. Revival property:

a+b \u003d b+a

1. Subtraction of the amount from among:

a- (b+C) \u003d A-B-C, B+C ‹A or B+C \u003d A

2. Called property:

a+(b+c) \u003d (a+b)+c \u003d a+b+c

2. Subtraction of the number from the amount:

(a+b) -c \u003d a+(b-C), C ‹B or C \u003d B

(a+b) -c \u003d (a-C)+b, C ‹or C \u003d A

3. Club of zero:

a+0 \u003d 0+A \u003d A

3. The property of zero:

a-0 \u003d A;

a-a \u003d 0

Cheatheller in profile mathematics

Scarling in specialized mathematics:

  • F-lla of a half argument.

sin² ern /2 \u003d (1 - cos ern) /2

cos² ern /2 \u003d (1 + cosement) /2

tG ern /2 \u003d sinorn /(1 + cosement) \u003d (1-cos ern) /sin isp

Μ   + 2 n, n  z

  • F-li transformation of the amount into the production.

sin x + sin y \u003d 2 sin ((x + y)/2) cos ((x-y)/2)

sin x-sin y \u003d 2 cos ((x+y)/2) sin ((x-y)/2)

cOS X + COS Y \u003d 2COS (X + Y)/2 COS (X-Y)/2

cOS X -COS Y \u003d -2SIN (X+Y)/2 SIN (X -Y)/2

  • Formulas preobr. production. In the amount

sin x sin y \u003d ½ (cos (x-y)-cos (x+y))

cos x cos y \u003d ½ (cos (x-y)+ cos (x+ y))

sin x cos y \u003d ½ (sin (x-y)+ sin (x+ y))

  • The ratio between functions

sin x \u003d (2 tg x/2)/(1+tg 2x/2)

cOS X \u003d (1-TG 2 2/x)/(1+ tg² x/2)

sin2x \u003d (2TGX)/(1+TG 2x)

sin² ern \u003d 1 /(1+ctg² mon) \u003d tg² mics /(1+tg² isp)

cos² ern \u003d 1 / (1+tg² isp) \u003d ctg² √ / (1+ctg² isp)

cTG2 piped

sin3 pipes \u003d 3sinorn -4sin³ √ \u003d 3cos² ern sinorn -sin³

cOS3P \u003d 4COS³ Š -3 COSP \u003d COS³ Š -3COSPorn ML

tG3MER \u003d (3TGHPER -TG³ M)/(1-3TG² M)

cTG3P \u003d (CTG³ ispg mill)/(3CTG² isp)

sin ern /2 \u003d   ((1-cosement) /2)

cOS ern /2 \u003d   ((1+COSP) /2)

tGHP /2 \u003d   ((1-COSP) /(1+COSP)) \u003d

sinorn /(1+cosement) \u003d (1-cosement) /sinising

ctg mill /2 \u003d   ((1+COSM) /(1-cosement)) \u003d

sinorn /(1-cosising) \u003d (1+cosement) /sinising

sin (arcsin isp) \u003d ₽

cOS (arccos isp) \u003d ₽

tg (arctg isp) \u003d ₽

cTG (arcctg isp) \u003d ₽

arcsin (sinoff) \u003d ern; Μ  [- /2;  /2]

arccos (cos isp) \u003d Š;   [0; ]

arctg (tg isp) \u003d √; Μ  [- /2;  /2]

arcctg (ctg isp) \u003d ₽;   [0; ]

arcsin (sin )=

1
Isp - 2 k;   [- /2 +2 k;  /2 +2 k]

2
(2k+1)  - isp; § [ /2+2 k; 3 /2+2 k]

arccos (COS ) =

1
Μ -2 k; Μ  [2 K; (2k+1) ]

2
2 k-pan; § [(2K-1) ; 2 k]

arctg (TG )=  — K.

Μ  (- /2 + k;  /2 + k)

arcctg (CTG ) =  — K.

Μ  ( k; (k+1) )

arcsinorn \u003d -Arcsin (—oft) \u003d  /2-arcosoff \u003d

\u003d arctg ern / (1-pan ²)

arccosoff \u003d  -arccos (-M) \u003d  /2-assin ern \u003d

\u003d arc ctg pipes / (1-pan ²)

arctgovern \u003d -arctg (-M) \u003d  /2 -arcctg pan \u003d

\u003d arcsin ern / (1+ ²)

arc ctg √ \u003d  -arc cctg (—off) \u003d

\u003d arc cos mon / (1-pan ²)

arctg ern \u003d arc ctg1/√ \u003d

\u003d arcsin ern / (1+ ²) \u003d arccos1 / (1+isp)

arcsin ern + arccos \u003d  /2

arcctg ern + arctg pipes \u003d  /2

  • Indicative equations.

Inequality: if a f (x)›(‹) A a (h)

1
A ›1, the sign does not change.

2
A ‹1, then the sign is changing.

Logarithms: inequalities:

log af (x) ›(‹) log a  (x)

1. a ›1, then: f (x)› 0

 (x) ›0

f (x) › (x)

2. 0 ‹a‹ 1, then: \u003d "" f (x) \u003d "" ›0

 (x) ›0

f (x) ‹ (x)

3. log f (x)  (x) \u003d a

ODZ:  (x) ›0

f (x) ›0

f (x)  1

Trigonometry:

1. Decomposition into multipliers:

sin 2x -  3 cos x \u003d 0

2sin x cos x -3 cos x \u003d 0

cos X (2 sin x -  3) \u003d 0

2. Solutions by replacement

3.Sin² x - sin 2x + 3 cos² x \u003d 2

sin² x - 2 sin x cos x + 3 cos ² x \u003d 2 sin² x + cos² x

Then it is written if sin x \u003d 0, then cos x \u003d 0,

and this is impossible, \u003d ›can be divided into COS X

  • Trigonometric nervous:

sin  m

2 K+ 1 =  =  2+ 2 K.

2 K+ 2 =  = ( 1+2 )+ 2 K.

Example:

I cos ( /8+x) ‹ 3/2

 k + 5 /6  /8 + x ‹7 /6 + 2 K

2 k+ 17 /24 ‹x  /24+ 2 k ;;;;

II sin ern \u003d 1/2

2 k + 5 /6 \u003d √ \u003d 13 /6 + 2 K

cOS  (= ) m

2 K + 1 <  <  2+2 K.

2 K+ 2 < ( 1+2 ) + 2 K.

cos mon  -  2/2

2 k +5 /4 \u003d √ \u003d 11 /4 +2 K

tG  (= ) m

K+ Arctg M=  = Arctg M + K.

cTG (= ) m

K+Arcctg M ‹ <  + K.

  • Integrals:

 x n.dX \u003d x n+1/(n + 1) + C

 a xdX \u003d AX/LN A + C

 e x DX \u003d E x + C.

 cos x dx \u003d sin x + cos

 sin x dx \u003d - cos x + c

 1/x dx \u003d ln | x | + C.

 1/cos² x \u003d tg x + c

 1/sin² x \u003d - ctg x + c

 1/ (1-x²) dx \u003d arcsin x +c

 1/ (1-x²) dx \u003d-arccos x +c

 1/1 + x² dx \u003d arctg x + c

 1/1 + x² dx \u003d - arcctg x + c

Mathematics cheat sheets - fractions

Mathematics cheat sheets - fractions:

Rule:

Sample solution

1. At addition (subtraction)  fraction with  identical denominators We coil (subtract) their numerators, and leave the denominator the same.

- If the fraction is reduced, then we reduce it. - If the fraction is wrong, then we highlight the whole part, dividing the numerator into a denominator with the remainder.

2. At addition (subtraction)  fraction with  different denominators First, bring them to the common denominator, and then rule 1.

3. At addition  mixed numbers with the same denominators We coil their entire parts and fractional parts. The fractional parts are coordinated by rule 1.

- If the fractional part is reduced, then we reduce it.

- If the fractional part is the wrong fraction, then we distinguish the whole part from it and add it to the existing whole part.

4. At subtraction  mixed numbers with the same denominators We subtract their whole parts and fractional parts. We subtract the fractional parts by rule1.

- If the fractional part of the first number is less than the fractional part of the second number, then we separate from the whole part 1 And we translate it along with the fractional part into the wrong fraction, then we subtract the entire parts and fractional parts.

- If the fractional part of the first number is absent, then we separate from the whole number 1 And we write it down in the form of a fraction with the same numbers in the numerator and denominator (the numbers should be equal to the denominator of the second number), then we subtract entire parts and fractional parts.

 

5. At addition (subtraction)  mixed numbers with different denominators First, we bring their fractional parts to the common denominator, and then rules 3 ( according to the rule 4).

Rule:

Sample solution

7.At multiplication  fractions for the number Only the numerator is multiplying this number, and leave the denominator the same.

- If the fraction is reduced, then we reduce it. - If the fraction is wrong, then we highlight the whole part, dividing the numerator into a denominator with the remainder.

eight.At multiplication  fraction We multiply the numerator by the numerator, and the denominator by the denominator.

- If you can reduce, then first reduce, and then multiply.

- If the fraction is wrong, then we highlight the whole part, dividing the numerator into a denominator with the remainder.

9.At multiplication  mixed numbers We transfer them to the wrong fraction, and then rules 8.

ten.At division  fraction The division is replaced by multiplication, while we turn the second shot, then rules 6.

eleven.At division  fractions for the number you need to write this number in the form of a frax with a denominator 1, then rules 10.

12.At division  mixed numbers We transfer them to the wrong fraction, and then rules 10.

13.At division  mixed number for an integer number We translate the mixed number into irregular fraction, and then along rules 11.

fourteen.To mixed number  translate in incorrect fraction You need to multiply the denominator by the whole part and add the numerator. Record the resulting number in the numerator, and leave the denominator the same.

Examination cheat sheets

Examination cheat sheets:

  • Geometry
Trigonometry: sinA=ac.sina \u003d AC    cOSA=b.c.cOSA \u003d BC
tGA=sinAcOSA=ab.tGA \u003d sinacosa \u003d AB
Cosine theorem: c.2=a2+b.22ab.cOSC.c2 \u003d A2+B2-2AB⋅COSC
Sinus theorem:

asinA=b.sinB.=c.sinC.=2Rasina \u003d bsinb \u003d csink

\u003d 2r

where r is the radius of the described circle
The equation of the circle: (xx0)2+(yy0)2=R2(x-x0) 2+ (y-y0) 2 \u003d r2 where (x0;y0)(x0; y0) Coordinates of the center of the circle
The ratio of inscribed and central angles: β=α2=α2β \u003d α2 \u003d ∪α2
The described circle, triangle: R=ab.c.4S.R \u003d ABC4S See also the theorem of sinuses. The center lies at the intersection of median perpendiculars.
Inscribed circle, triangle: r=S.p.r \u003d SP where P is the semi -perimeter of the polygon. The center lies at the intersection of bisector.
The described circle, quadrangle: α+γ=β+δ=180α+γ \u003d β+δ \u003d 180∘
Inscribed circle, quadrangle: a+c.=b.+d.a+C \u003d B+D
Bisectress property: ax=b.yaX \u003d by
The intersecting chords theorem: AMB.M=C.MD.MAm⋅bm \u003d cm⋅dm These theorems must be able to display
The coal theorem between the tangent and the chord: α=12AB.α \u003d 12∪AB
The theorem about the tangent and secant: C.M2=AMB.MCM2 \u003d am⋅bm
Tangular segments theorem: AB.=AC.AB \u003d AC
  • Square of figures:
Circle: S.=πr2S \u003d πR2
Triangle: S.=12ahS \u003d 12AH
Parallelogram: S.=ahS \u003d AH
Quadruple: S.=12d.1d.2sinφS \u003d 12D1D2Sinφ At the rhombus φ=90φ \u003d 90∘
Trapezius: S.=a+b.2hS \u003d A+B2⋅H
  • Probability
Probability Events a: P.(A)=mn.P (a) \u003d mn m is the number of favorable events
n - total number of events
Events occur a and b occur simultaneously AB.A⋅b
Independent developments: P.(AB.)=P.(A)P.(B.)P (a⋅b) \u003d p (a) ⋅p (b) When the probability of one event (a) does not depend on another event (b)
Dependent developments: P.(AB.)=P.(A)P.(B.A)P (a⋅b) \u003d p (a) ⋅p (b∣a) P.(B.A)P (b∣a) - the probability of event B, provided that event a has occurred
Is happening or event a, or B. A+B.A+b
Inexpressible developments: P.(A+B.)=P.(A)+P.(B.)P (a+b) \u003d p (a)+p (b) When the onset of both events is impossible at the same time, i.e. P.(AB.)=0P (a⋅b) \u003d 0
Joint developments:

P.(A+B.)=P.(A)+P.(B.)P.(AB.)P (a+b) \u003d

P (a)+p (b) -p (a⋅b)

When both events can come at the same time
  • Functions graphs, functions studied at school
The name of the function Formula of function Function schedule The name of the graphics Note
Linear y \u003d kx
Linear function schedule - direct line
Straight Linear dependence - direct proportionality y \u003d kx,
where k. ≠ 0 - proportionality coefficient.
Linear y =  kX +  b.
Linear function schedule - direct line
Straight Linear dependence:
coefficients k. and b. - Any real numbers.
(k. \u003d 0.5, b. \u003d 1)
Quadratic y \u003d x2
Parabola schedule
Parabola Quadratic dependence:
Symmetric parabola with the top at the beginning of the coordinates.
Quadratic y \u003d xn.
Square function schedule - parabola
Parabola Quadratic dependence:
n. - Natural even number ›1
Steep y \u003d xn.
Schedule cubic parabola
Cuban parabola Odd degree:
n. - natural odd number ›1
Steep y \u003d x1/2
Function schedule - square root x
Function schedule
y = √ x
Steep dependence ( x1/2 = √ x).
Steep y \u003d k/x
Return proportional schedule - hyperbole
Hyperbola Case for a negative degree
(1/x \u003d x-1).
Opend-proportional dependence.
(k. \u003d 1)
Indicative y =  a x
A schedule of indicative function Indicative function for a \u003e one.
Indicative y \u003d a x
A schedule of indicative function
A schedule of indicative function Indicative function for 0 ‹ a \u003c one.
Logarithmic y \u003d log ax
Logarithmic function schedule - logarithmic
Schedule of logarithmic function Logarithmic function: a \u003e one.
Logarithmic y \u003d log ax
Logarithmic function schedule - logarithmic
Schedule of logarithmic function Logarithmic function: 0 ‹ a \u003c one.
Sinus y \u003d sin x
Graph of trigonometric function - sinusoid
Sinusoid Trigonometric function sinus.
Cosine y \u003d cos x
The schedule of trigonometric function - Cosinusoid
Cosinusoid The trigonometric function is cosine.
Tangent y \u003d tg x
Trigonometric function schedule - tangensoid
Tangensoid Trigonometric function of tangent.
Cotangent y \u003d CTG x
Graph of trigonometric function - Cotangensoid
Kotangensoid Trigonometric function of cotangenes.
  • Formulas of the work.

multiplication

division

division

The formula of work

What about work)

A \u003d V T

V (performance)

V \u003d a: t

t (time)

t \u003d a: v

The formula of mass

M (total mass)

M \u003d m n

M (mass of one subject)

m \u003d m: n

n (quantity)

n \u003d m: m

Formula of value

C (cost)

C \u003d and n

what about the price)

a \u003d C: N

n (quantity)

n \u003d C: a

The formula of the path

S (distance, path)

S \u003d V T

V (speed)

V \u003d s: t

t (time)

t \u003d s: v

Formula of the area

S (area)

S \u003d A B

S \u003d A A

a (length)

a \u003d S: B

a \u003d S: A

b (width)

b \u003d s: a

a \u003d S: A

  • Division formula with residual a \u003d b c + r,r B.
  • Perimeter formula p \u003d a 4 p \u003d (a + b) 2
  • a \u003d p: 4 (side of the square) a \u003d (p - b 2): 2 (side of the rectangle)
  • Volume formula:
  • - rectangular parallelepiped v \u003d a b C (a- day, b-width, c- height)
  • a \u003d v: (a b) (side of a rectangular parallelepiped)
  • - Cuba v \u003d a a a a a
  • a \u003d v: (a a) (side of the cube)

Trigonometric formulas for high school students

  • Trigonometric functions of one angle

  • Trigonometric functions of the amount and difference of two angles


  • Trigonometric functions of the double angle

Formulas of lowering degrees for squares of trigonometric functions

  • Formulas of lowering degree for cubes of sinus and cosinea
  • Tangens expression through a sinus and a double angle mowing
  • Transformation of the amount of trigonometric functions into a work
  • Transformation of the work of trigonometric functions in the amount
  • Expression of trigonometric functions through a half angle tangent
  • Trigonometric functions of the triple angle

Mathematics cheat sheets to prepare for the exam

Mathematics cheat sheets to prepare for the exam:

Formulas of abbreviated multiplication

(a+b) 2 \u003d a 2 + 2AB + B 2

(a-b) 2 \u003d a 2 - 2AB + B 2

a 2 - b 2 \u003d (a-b) (a+b)

a 3 - b 3 \u003d (a-b) (a 2 + ab + b 2)

a 3 + b 3 \u003d (a+b) (a 2 - AB + B 2)

(a + b) 3 \u003d a 3 + 3a 2b+ 3AB 2+ b 3

(a - b) 3 \u003d a 3 - 3a 2b+ 3AB 2- b 3

The properties of degrees

a 0 \u003d 1 (a ≠ 0)

a m/N \u003d (a≥0, n ε n, m ε n)

a - R \u003d 1/ A r (a ›0, r ε q)

a m · A n. \u003d a m + N

a m : a n. \u003d a m - N (a ≠ 0)

(a m) N. \u003d a mn

(AB) N. \u003d a n. B. n.

(a/b) n. \u003d a N./ b N.

The first -shaped

If f ’(x) \u003d f (x), then f (x) - the primary

for f (x)

Functionf(x) \u003d PrimaryF(x)

k \u003d kx + c

x n. \u003d x n.+1/n + 1 + C

1/x \u003d ln | x | + C.

e. x \u003d E x + C.

a x \u003d a x/ ln a + c

1/√x \u003d 2√x + c

cos x \u003d sin x + c

1/ sin 2 x \u003d - ctg x + c

1/ cos 2 x \u003d tg x + c

sin x \u003d - cos x + c

1/ x 2 \u003d - 1/x

Geometric progression

b.  n.+1 \u003d b n. · Q, where n ε n

q - denominator of progression

b.  n. \u003d b 1 · Q.  n. - one -N-th member of the progression

Sumn-s members

S.  n. \u003d (b N. Q - b one )/Q-1

S.  n. \u003d b one (Q. N. -1)/Q-1

Module

| A | \u003d a, if a favor

-a, if a ‹0

Formulas COSand sin

sin (-x) \u003d -sin x

cos (-x) \u003d cos x

sin (x + π) \u003d -sin x

cos (x + π) \u003d -cos x

sin (x + 2πk) \u003d sin x

cOS (x + 2πk) \u003d COS X

sin (x + π/2) \u003d cos x

Volumes and surfaces of bodies

1. Prism, straight or inclined, parallelepipedV \u003d s · h

2. Direct prism S. SIDE\u003d p · h, p is the perimeter or circumference length

3. The parallelepiped is rectangular

V \u003d a · b · c; P \u003d 2 (a · b + b · c + c · a)

P is the full surface

4. Cube: V \u003d a 3 ; P \u003d 6 A 2

5.  Pyramid, correct and wrong.

S \u003d 1/3 S · H; S - base area

6.The pyramid is correct S \u003d 1/2 P · A

A - Apofem of the correct pyramid

7. Circular cylinder V \u003d s · h \u003d πr 2h

8. Circular cylinder: S. SIDE \u003d 2 πrh

9. Circular cone: V \u003d 1/3 sh \u003d 1/3 πr 2h

ten. Circular cone:S. SIDE \u003d 1/2 pl \u003d πrl

Trigonometric equations

sin x \u003d 0, x \u003d πn

sin x \u003d 1, x \u003d π/2 + 2 πn

sin x \u003d -1, x \u003d -π/2 + 2 πn

cos x \u003d 0, x \u003d π/2 + 2 πn

cos x \u003d 1, x \u003d 2πn

cos x \u003d -1, x \u003d π + 2 πn

Addition Theorems

cos (x +y) \u003d cosx · cosy - sinx · siny

cos (x -y) \u003d cosx · cosy + sinx · siny

sin (x + y) \u003d sinx · cosy + cosx · siny

sin (x -y) \u003d sinx · cosy -cosx · siny

tg (x ± y) \u003d tg x ± tg y/ 1 + tg x · tg y

ctg (x ± y) \u003d tg x + tg y/ 1 ± tg x · tg y

sin x ± sin y \u003d 2 cos (x ± y/2) · cos (x +y/2)

cOS X ± COSY \u003d -2 sin (x ± y/2) · sin (x +y/2)

1 + cos 2x \u003d 2 cos 2 x; cOS 2x \u003d 1+cos2x/2

1 - cos 2x \u003d 2 sin 2 x; sin 2x \u003d 1- COS2X/2

6.Trapezius

a, b - bases; h - height, c - the middle line s \u003d (a+b/2) · h \u003d c · h

7.Square

a - side, d - diagonal s \u003d a 2 \u003d D 2/2

8. Rhombus

a - side, D 1, d 2 - diagonals, α is the angle between them s \u003d D 1d. 2/2 \u003d A 2sinα

9. The correct hexagon

a - side s \u003d (3√3/2) a 2

ten.A circle

S \u003d (l/2) r \u003d πr 2 \u003d πd 2/4

eleven.Sector

S \u003d (πr 2/360) α

Differentiation rules

(f (x) + g (x) ’\u003d f’ (x) + g ’(x)

(k (f (x) ’\u003d kf’ (x)

(f (x) g (x) ’\u003d f’ (x) g (x) + f (x) · g ’(x)

(f (x)/g (x) ’\u003d (f’ (x) g (x) - f (x) · g ’(x))/g 2 (x)

(X n.) ’\u003d Nx n-1

(tg x) ’\u003d 1/ cos 2 x

(ctg x) ’\u003d - 1/ sin 2 x

(f (kx + m)) ’\u003d kf’ (kx + m)

Tangent equation to function graphics

y \u003d f ’(a) (x-a) + f (a)

SquareS. figures limited by straightx=ax=b.

S \u003d ∫ (f (x) - g (x)) dx

Newtonian formula

ab. f (x) dx \u003d f (b) - f (a)

t  π/4  π/2  3π/4  π  cOS √2/2 0 --√2/2 1 sin √2/2 1 √2/2 0 t  5π/4  3π/2  7π/4    cOS --√2/2 0 √2/2 1 sin --√2/2 -1 --√2/2 0 t  0  π/6  π/4  π/3  tG 0 √3/3 1 √3 cTG - √3 1 √3/3
in x \u003d b x \u003d (-1) n. arcsin b + πn

cos x \u003d b x \u003d ± arcos b + 2 πn

tg x \u003d b x \u003d arctg b + πn

ctg x \u003d b x \u003d arcctg b + πn

Theorem sinusov: a/sin α \u003d b/sin β \u003d c/sin γ \u003d 2r

Cosine theorem: With 2\u003d a 2+b 2-2ab cos y

Uncertain integrals

∫ dx \u003d x + c

∫ x n. DX \u003d (x  n. +1/n + 1) + C

∫ dx/x 2 \u003d -1/x + c

∫ dx/√x \u003d 2√x + c

∫ (kx + b) \u003d 1/k f (kx + b)

∫ sin x dx \u003d - cos x + c

∫ cos x dx \u003d sin x + c

∫ dx/sin 2 x \u003d -ctg + c

∫ dx/cos 2 x \u003d tg + c

∫ x r DX \u003d x R+1/r + 1 + C

Logarithms

1. LOG a A \u003d 1

2. log a 1 \u003d 0

3. log a (b n.) \u003d n log a B.

4. log An. b \u003d 1/n log a B.

5. log a B \u003d log C. B/ log c. a

6. log a B \u003d 1/ log B. a

Degree  0  30  45  60  sin 0 1/2 √2/2 √3/2 cOS 1 √3/2 √2/2 1/2 tG 0 √3/3 1 √3 t  π/6  π/3 2π/3 5π/6 cOS √3/2 1/2 -1/2 --√3/2 sin 1/2 √3/2 √3/2 1/2 90  120  135  150  180 1 √3/2 √2/2 1/2 0 0 -1/2 -√2/2 --√3/2 -1 - -√3 -1 √3/3 0 t  7π/6  4π/3  5π/3  11π/6  cOS --√3/2 -1/2 1/2 √3/2 sin -1/2 --√3/2 --√3/2 -1/2

Double argument formulas

cOS 2X \u003d COS 2x - sin 2 x \u003d 2 cos 2 x -1 \u003d 1 -2 sin 2 x \u003d 1 - tg 2 X/1 + TG 2 x

sin 2x \u003d 2 sin x · cos x \u003d 2 tg x/ 1 + tg 2x

tG 2X \u003d 2 TG X/ 1 - TG 2 x

cTG 2x \u003d CTG 2 X - 1/2 CTG X

sin 3x \u003d 3 sin x - 4 sin 3 x

cOS 3X \u003d 4 COS 3 x - 3 cos x

tG 3X \u003d 3 TG X - TG 3 X / 1 - 3 TG 2 x

sin s cos t \u003d (sin (s+t)+sin (s+t))/2

sin s sin t \u003d (cos (s-t)-cos (s+t))/2

cOS S COS T \u003d (COS (S + T) + COS (S-T))/2

Differentiation formulas

c ’\u003d 0 ()’ \u003d 1/2

x ’\u003d 1 (sin x)’ \u003d cos x

(kx + m) ’\u003d k (cos x)’ \u003d - sin x

(1/x) ’\u003d - (1/x 2) (ln x) ’\u003d 1/x

(E. x) ’\u003d E x; (X n.) ’\u003d Nx N-1; (log a x) ’\u003d 1/x ln a

Square of flat figures

1. A rectangular triangle

S \u003d 1/2 a · b (a, b - cuttings)

2. An isosceles triangle

S \u003d (A/2) · √ B 2 - a 2/4

3. An equilateral triangle

S \u003d (A 2/4) · √3 (a - side)

four.Arbitrary triangle

a, b, c - sides, a - base, h - height, a, b, c - angles lying against the sides; p \u003d (a+b+c)/2

S \u003d 1/2 A · H \u003d 1/2 A 2b sin c \u003d

a 2sinb sinc/2 sin a \u003d √p (p-a) (p-b) (p-c)

5. Parallelogram

a, b - sides, α - one of the corners; h - height s \u003d a · h \u003d a · b · sin α

cos (x + π/2) \u003d -sin x

Formulas TGand CTG

tg x \u003d sin x/ cos x; Ctg x \u003d cos x/sin x

tg (-x) \u003d-tg x

cTG (-x) \u003d-ctg x

tg (x + πk) \u003d tg x

ctg (x + πk) \u003d ctg x

tg (x ± π) \u003d ± tg x

ctg (x ± π) \u003d ± ctg x

tg (x + π/2) \u003d - ctg x

cTG (x + π/2) \u003d - tg x

sin 2 X + COS 2 x \u003d 1

tg x · ctg x \u003d 1

1 + TG 2 x \u003d 1/ cos 2 x

1 + CTG 2 x \u003d 1/ sin 2x

tG 2 (x/ 2) \u003d 1 - cos x/ 1 + cos x

cOS 2 (x/ 2) \u003d 1 + cos x/ 2

sin 2 (x/ 2) \u003d 1 - cos x/ 2

eleven.Ball: V \u003d 4/3 πr 3 \u003d 1/6 πd 3

P \u003d 4 πr 2 \u003d πd 2

12.Ball segment

V \u003d πh 2 (R-1/3h) \u003d πh/6 (h 2 + 3r 2)

S. SIDE \u003d 2 πrh \u003d π (r 2 + h 2); P \u003d π (2R 2 + h 2)

13.Ball layer

V \u003d 1/6 πh 3 + 1/2 π (r 2 + h 2) · H;

S. SIDE \u003d 2 π · R · H

14. Ball sector:

V \u003d 2/3 πr 2 h ’where h’ is the height of the segment containing in the sector

Formula of the roots of the square equation

(A a a a azeals, b≥0)

(a≥0)

aX 2 + bx + c \u003d 0 (a ≠ 0)

If d \u003d 0, then x \u003d -b/2a (d \u003d b 2-4ac)

If d ›0, then x 1,2 \u003d -b ± /2a

Vieta theorem

x 1 + x 2 \u003d -b/a

x 1 · X 2 \u003d C/A

Arithmetic progression

a n.+1\u003d a  n. + D, where n is a natural number

d is the difference in progression;

a n. \u003d a one + (n-1) · D-formula of the nth penis

Sum N.members

S.  n. \u003d (a one + a N. )/2) n

S.  n. \u003d ((2A one + (n-1) d)/2) n

Radius of the described circle near the polygon

R \u003d A/ 2 SIN 180/ N

The radius of the inscribed circle

r \u003d A/ 2 TG 180/ N

Circle

L \u003d 2 πr s \u003d πr 2

The area of \u200b\u200bthe cone

S. SIDE \u003d πrl

S. Con \u003d πr (l+r)

Tangent angle- The attitude of the opposing leg to the adjacent. Kotangenes - on the contrary.

Formulas in mathematics - cheat sheet in pictures

Formulas in mathematics - cheat sheet in pictures:

To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons


Evaluate the article

Add a comment

Your e-mail will not be published. Mandatory fields are marked *