Mathematics cheat sheets that will help to pass exams without any problems.
Content
Examination cheat sheets
Examination cheat sheets:
- Geometry
Trigonometry: | sinA=ac.sina \u003d AC cOSA=b.c.cOSA \u003d BC | ||
tGA=sinAcOSA=ab.tGA \u003d sinacosa \u003d AB | |||
Cosine theorem: |
c.2=a2+b.2−2ab.⋅cOSC.c2 \u003d a2+B2-2AB⋅COSC |
||
Sinus theorem: |
asinA=b.sinB.=c.sinC.=2Rasina \u003d bsinb \u003d CSINC\u003d 2r |
where r is the radius of the described circle | |
The equation of the circle: |
(x−x0)2+(y−y0)2=R2(X-X0) 2+ (y-y0) 2 \u003d R2 |
where (x0;y0)(x0; y0) Coordinates of the center of the circle | |
The ratio of inscribed and central angles: | β=α2=∪α2β \u003d α2 \u003d ∪α2 | ||
The described circle, triangle: | R=ab.c.4S.R \u003d ABC4S | See also the theorem of sinuses. The center lies at the intersection of median perpendiculars. | |
Inscribed circle, triangle: | r=S.p.r \u003d SP | where P is the semi -perimeter of the polygon. The center lies at the intersection of bisector. | |
The described circle, quadrangle: | α+γ=β+δ=180∘α+γ \u003d β+δ \u003d 180∘ | ||
Inscribed circle, quadrangle: | a+c.=b.+d.a+C \u003d B+D | ||
Bisectress property: | ax=b.yaX \u003d by | ||
The intersecting chords theorem: | AM⋅B.M=C.M⋅D.MAm⋅bm \u003d cm⋅dm | These theorems must be able to display | |
The coal theorem between the tangent and the chord: | α=12∪AB.α \u003d 12∪AB | ||
The theorem about the tangent and secant: | C.M2=AM⋅B.MCM2 \u003d am⋅bm | ||
Tangular segments theorem: | AB.=AC.AB \u003d AC |
- Square of figures:
Circle: | S.=πr2S \u003d πR2 | |
Triangle: | S.=12ahS \u003d 12AH | |
Parallelogram: | S.=ahS \u003d AH | |
Four -year -old: | S.=12d.1d.2sinφS \u003d 12D1D2Sinφ | At the rhombus φ=90∘φ \u003d 90∘ |
Trapezius: | S.=a+b.2⋅hS \u003d A+B2⋅H |
- Probability
Probability Events a: | P.(A)=mn.P (a) \u003d mn | m is the number of favorable events n - total number of events |
Events occur a and b occur simultaneously | A⋅B.A⋅b | |
Independent developments: |
P.(A⋅B.)=P.(A)⋅P.(B.)P (a⋅b) \u003d P (a) ⋅p (b) |
When the probability of one event (a) does not depend on another event (b) |
Dependent developments: |
P.(A⋅B.)=P.(A)⋅P.(B.∣A)P (a⋅b) \u003d P (a) ⋅p (b∣a) |
P.(B.∣A)P (b∣a) - the probability of event B, provided that event a has occurred |
Is happening or event a, or B. | A+B.A+b | |
Inexpressible developments: |
P.(A+B.)=P.(A)+P.(B.)P (a+b) \u003d P (a)+p (b) |
When the onset of both events is impossible at the same time, i.e. P.(A⋅B.)=0P (a⋅b) \u003d 0 |
Joint developments: |
P.(A+B.)=P.(A)+P.(B.)−P.(A⋅B.)P (a+b) =P (a)+p (b) -p (a⋅b) |
When both events can come at the same time |
- Functions graphs, functions studied at school
The name of the function | Formula of function | Function schedule | The name of the graphics | Note |
---|---|---|---|---|
Linear | y \u003d kx | Straight | Linear dependence - direct proportionality y \u003d kx, where k. ≠ 0 - proportionality coefficient. |
|
Linear | y = kX + b. | Straight | Linear dependence: coefficients k. and b. - Any real numbers. (k. \u003d 0.5, b. \u003d 1) |
|
Quadratic | y \u003d x2 | Parabola | Quadratic dependence: Symmetric parabola with the top at the beginning of the coordinates. |
|
Quadratic | y \u003d xn. | Parabola | Quadratic dependence: n. - Natural even number ›1 |
|
Steep | y \u003d xn. | Cuban parabola | Odd degree: n. - natural odd number ›1 |
|
Steep | y \u003d x1/2 | Function schedule y = √ x |
Steep dependence ( x1/2 = √ x). | |
Steep | y \u003d k/x | Hyperbola | Case for a negative degree (1/x \u003d x-1). Opend-proportional dependence. (k. \u003d 1) |
|
Indicative | y = a x | A schedule of indicative function | Indicative function for a \u003e one. | |
Indicative | y \u003d a x | A schedule of indicative function | Indicative function for 0 ‹ a \u003c one. | |
Logarithmic | y \u003d log ax | Schedule of logarithmic function | Logarithmic function: a \u003e one. | |
Logarithmic | y \u003d log ax | Schedule of logarithmic function | Logarithmic function: 0 ‹ a \u003c one. | |
Sinus | y \u003d sin x | Sinusoid | Trigonometric function sinus. | |
Cosine | y \u003d cos x | Cosinusoid | The trigonometric function is cosine. | |
Tangent | y \u003d tg x | Tangensoid | Trigonometric function of tangent. | |
Cotangent | y \u003d CTG x | Kotangensoid | Trigonometric function of cotangenes. |
- Formulas of the work.
multiplication |
: division |
: division |
|
The formula of work |
What about work) A \u003d V T |
V (performance) V \u003d a: t |
t (time) t \u003d a: v |
The formula of mass |
M (total mass) M \u003d m n |
M (mass of one subject) m \u003d m: n |
n (quantity) n \u003d m: m |
Formula of value |
C (cost) C \u003d and n |
what about the price) a \u003d C: N |
n (quantity) n \u003d C: a |
The formula of the path |
S (distance, path) S \u003d V T |
V (speed) V \u003d s: t |
t (time) t \u003d s: v |
Formula of the area |
S (area) S \u003d A B S \u003d A A |
a (length) a \u003d S: B a \u003d S: A |
b (width) b \u003d s: a a \u003d S: A |
- Division formula with residual a \u003d b c + r,r B.
- Perimeter formula p \u003d a 4 p \u003d (a + b) 2
- a \u003d p: 4 (side of the square) a \u003d (p - b 2): 2 (side of the rectangle)
- Volume formula:
- - rectangular parallelepiped v \u003d a b C (a- day, b-width, c- height)
- a \u003d v: (a b) (side of a rectangular parallelepiped)
- - Cuba v \u003d a a a a a
- a \u003d v: (a a) (side of the cube)
Trigonometric formulas for high school students
- Trigonometric functions of one angle
- Trigonometric functions of the amount and difference of two angles
- Trigonometric functions of the double angle
Formulas of lowering degrees for squares of trigonometric functions
- Formulas of lowering degree for cubes of sinus and cosinea
- Tangens expression through a sinus and a double angle mowing
- Transformation of the amount of trigonometric functions into a work
- Transformation of the work of trigonometric functions in the amount
- Expression of trigonometric functions through a half angle tangent
- Trigonometric functions of the triple angle
Mathematics cheat sheets to prepare for the exam
Mathematics cheat sheets to prepare for the exam:
- Formulas of abbreviated multiplication
(a+b) 2 \u003d a 2 + 2AB + B 2
(a-b) 2 \u003d a 2 - 2AB + B 2
a 2 - b 2 \u003d (a-b) (a+b)
a 3 - b 3 \u003d (a-b) (a 2 + ab + b 2)
a 3 + b 3 \u003d (a+b) (a 2 - AB + B 2)
(a + b) 3 \u003d a 3 + 3a 2b+ 3AB 2+ b 3
(a - b) 3 \u003d a 3 - 3a 2b+ 3AB 2- b 3
- The properties of degrees
a 0 \u003d 1 (a ≠ 0)
a m/N \u003d (a≥0, n ε n, m ε n)
a - R \u003d 1/ A r (a ›0, r ε q)
a m · A n. \u003d a m + N
a m : a n. \u003d a m - N (a ≠ 0)
(a m) N. \u003d a mn
(AB) N. \u003d a n. B. n.
(a/b) n. \u003d a N./ b N.
- The first -shaped
If f ’(x) \u003d f (x), then f (x) - the primary
for f (x)
Functionf(x) \u003d PrimaryF(x)
k \u003d kx + c
x n. \u003d x n.+1/n + 1 + C
1/x \u003d ln | x | + C.
e. x \u003d E x + C.
a x \u003d a x/ ln a + c
1/√x \u003d 2√x + c
cos x \u003d sin x + c
1/ sin 2 x \u003d - ctg x + c
1/ cos 2 x \u003d tg x + c
sin x \u003d - cos x + c
1/ x 2 \u003d - 1/x
- Geometric progression
b. n.+1 \u003d b n. · Q, where n ε n
q - denominator of progression
b. n. \u003d b 1 · Q. n. - one -N-th member of the progression
Sumn-s members
S. n. \u003d (b N. Q - b one )/Q-1
S. n. \u003d b one (Q. N. -1)/Q-1
- Module
| A | \u003d a, if a favor
-a, if a ‹0
- Formulas COSand sin
sin (-x) \u003d -sin x
cos (-x) \u003d cos x
sin (x + π) \u003d -sin x
cos (x + π) \u003d -cos x
sin (x + 2πk) \u003d sin x
cOS (x + 2πk) \u003d COS X
sin (x + π/2) \u003d cos x
- Volumes and surfaces of bodies
1. Prism, straight or inclined, parallelepipedV \u003d s · h
2. Direct prism S. SIDE\u003d p · h, p is the perimeter or circumference length
3. The parallelepiped is rectangular
V \u003d a · b · c; P \u003d 2 (a · b + b · c + c · a)
P is the full surface
4. Cube: V \u003d a 3 ; P \u003d 6 A 2
5. Pyramid, correct and wrong.
S \u003d 1/3 S · H; S - base area
6.The pyramid is correct S \u003d 1/2 P · A
A - Apofem of the correct pyramid
7. Circular cylinder V \u003d s · h \u003d πr 2h
8. Circular cylinder: S. SIDE \u003d 2 πrh
9. Circular cone: V \u003d 1/3 sh \u003d 1/3 πr 2h
ten. Circular cone:S. SIDE \u003d 1/2 pl \u003d πrl
- Trigonometric equations
sin x \u003d 0, x \u003d πn
sin x \u003d 1, x \u003d π/2 + 2 πn
sin x \u003d -1, x \u003d -π/2 + 2 πn
cos x \u003d 0, x \u003d π/2 + 2 πn
cos x \u003d 1, x \u003d 2πn
cos x \u003d -1, x \u003d π + 2 πn
- Addition Theorems
cos (x +y) \u003d cosx · cosy - sinx · siny
cos (x -y) \u003d cosx · cosy + sinx · siny
sin (x + y) \u003d sinx · cosy + cosx · siny
sin (x -y) \u003d sinx · cosy -cosx · siny
tg (x ± y) \u003d tg x ± tg y/ 1 —+ tg x · tg y
ctg (x ± y) \u003d tg x —+ tg y/ 1 ± tg x · tg y
sin x ± sin y \u003d 2 cos (x ± y/2) · cos (x —+y/2)
cOS X ± COSY \u003d -2 sin (x ± y/2) · sin (x —+y/2)
1 + cos 2x \u003d 2 cos 2 x; cOS 2x \u003d 1+cos2x/2
1 - cos 2x \u003d 2 sin 2 x; sin 2x \u003d 1- COS2X/2
6.Trapezius
a, b - bases; h - height, c - the middle line s \u003d (a+b/2) · h \u003d c · h
7.Square
a - side, d - diagonal s \u003d a 2 \u003d D 2/2
8. Rhombus
a - side, D 1, d 2 - diagonals, α is the angle between them s \u003d D 1d. 2/2 \u003d A 2sinα
9. The correct hexagon
a - side s \u003d (3√3/2) a 2
ten.A circle
S \u003d (l/2) r \u003d πr 2 \u003d πd 2/4
eleven.Sector
S \u003d (πr 2/360) α
- Differentiation rules
(f (x) + g (x) ’\u003d f’ (x) + g ’(x)
(k (f (x) ’\u003d kf’ (x)
(f (x) g (x) ’\u003d f’ (x) g (x) + f (x) · g ’(x)
(f (x)/g (x) ’\u003d (f’ (x) g (x) - f (x) · g ’(x))/g 2 (x)
(X n.) ’\u003d Nx n-1
(tg x) ’\u003d 1/ cos 2 x
(ctg x) ’\u003d - 1/ sin 2 x
(f (kx + m)) ’\u003d kf’ (kx + m)
- Tangent equation to function graphics
y \u003d f ’(a) (x-a) + f (a)
- SquareS. figures limited by straightx=a, x=b.
S \u003d ∫ (f (x) - g (x)) dx
- Newtonian formula
∫ab. f (x) dx \u003d f (b) - f (a)
t π/4 π/2 3π/4 π cOS √2/2 0 --√2/2 1 sin √2/2 1 √2/2 0 t 5π/4 3π/2 7π/4 2π cOS --√2/2 0 √2/2 1 sin --√2/2 -1 --√2/2 0 t 0 π/6 π/4 π/3 tG 0 √3/3 1 √3 cTG - √3 1 √3/3
in x \u003d b x \u003d (-1) n. arcsin b + πn
cos x \u003d b x \u003d ± arcos b + 2 πn
tg x \u003d b x \u003d arctg b + πn
ctg x \u003d b x \u003d arcctg b + πn
- Theorem sinusov: a/sin α \u003d b/sin β \u003d c/sin γ \u003d 2r
- Cosine theorem: With 2\u003d a 2+b 2-2ab cos y
- Uncertain integrals
∫ dx \u003d x + c
∫ x n. DX \u003d (x n. +1/n + 1) + C
∫ dx/x 2 \u003d -1/x + c
∫ dx/√x \u003d 2√x + c
∫ (kx + b) \u003d 1/k f (kx + b)
∫ sin x dx \u003d - cos x + c
∫ cos x dx \u003d sin x + c
∫ dx/sin 2 x \u003d -ctg + c
∫ dx/cos 2 x \u003d tg + c
∫ x r DX \u003d x R+1/r + 1 + C
- Logarithms
1. LOG a A \u003d 1
2. log a 1 \u003d 0
3. log a (b n.) \u003d n log a B.
4. log An. b \u003d 1/n log a B.
5. log a B \u003d log C. B/ log c. a
6. log a B \u003d 1/ log B. a
Degree 0 30 45 60 sin 0 1/2 √2/2 √3/2 cOS 1 √3/2 √2/2 1/2 tG 0 √3/3 1 √3 t π/6 π/3 2π/3 5π/6 cOS √3/2 1/2 -1/2 --√3/2 sin 1/2 √3/2 √3/2 1/2 90 120 135 150 180 1 √3/2 √2/2 1/2 0 0 -1/2 -√2/2 --√3/2 -1 - -√3 -1 √3/3 0 t 7π/6 4π/3 5π/3 11π/6 cOS --√3/2 -1/2 1/2 √3/2 sin -1/2 --√3/2 --√3/2 -1/2
- Double argument formulas
cOS 2X \u003d COS 2x - sin 2 x \u003d 2 cos 2 x -1 \u003d 1 -2 sin 2 x \u003d 1 - tg 2 X/1 + TG 2 x
sin 2x \u003d 2 sin x · cos x \u003d 2 tg x/ 1 + tg 2x
tG 2X \u003d 2 TG X/ 1 - TG 2 x
cTG 2x \u003d CTG 2 X - 1/2 CTG X
sin 3x \u003d 3 sin x - 4 sin 3 x
cOS 3X \u003d 4 COS 3 x - 3 cos x
tG 3X \u003d 3 TG X - TG 3 X / 1 - 3 TG 2 x
sin s cos t \u003d (sin (s+t)+sin (s+t))/2
sin s sin t \u003d (cos (s-t)-cos (s+t))/2
cOS S COS T \u003d (COS (S + T) + COS (S-T))/2
- Differentiation formulas
c ’\u003d 0 ()’ \u003d 1/2
x ’\u003d 1 (sin x)’ \u003d cos x
(kx + m) ’\u003d k (cos x)’ \u003d - sin x
(1/x) ’\u003d - (1/x 2) (ln x) ’\u003d 1/x
(E. x) ’\u003d E x; (X n.) ’\u003d Nx N-1; (log a x) ’\u003d 1/x ln a
- Square of flat figures
1. A rectangular triangle
S \u003d 1/2 a · b (a, b - cuttings)
2. An isosceles triangle
S \u003d (A/2) · √ B 2 - a 2/4
3. An equilateral triangle
S \u003d (A 2/4) · √3 (a - side)
four.Arbitrary triangle
a, b, c - sides, a - base, h - height, a, b, c - angles lying against the sides; p \u003d (a+b+c)/2
S \u003d 1/2 A · H \u003d 1/2 A 2b sin c \u003d
a 2sinb sinc/2 sin a \u003d √p (p-a) (p-b) (p-c)
5. Parallelogram
a, b - sides, α - one of the corners; h - height s \u003d a · h \u003d a · b · sin α
cos (x + π/2) \u003d -sin x
- Formulas TGand CTG
tg x \u003d sin x/ cos x; Ctg x \u003d cos x/sin x
tg (-x) \u003d-tg x
cTG (-x) \u003d-ctg x
tg (x + πk) \u003d tg x
ctg (x + πk) \u003d ctg x
tg (x ± π) \u003d ± tg x
ctg (x ± π) \u003d ± ctg x
tg (x + π/2) \u003d - ctg x
cTG (x + π/2) \u003d - tg x
sin 2 X + COS 2 x \u003d 1
tg x · ctg x \u003d 1
1 + TG 2 x \u003d 1/ cos 2 x
1 + CTG 2 x \u003d 1/ sin 2x
tG 2 (x/ 2) \u003d 1 - cos x/ 1 + cos x
cOS 2 (x/ 2) \u003d 1 + cos x/ 2
sin 2 (x/ 2) \u003d 1 - cos x/ 2
eleven.Ball: V \u003d 4/3 πr 3 \u003d 1/6 πd 3
P \u003d 4 πr 2 \u003d πd 2
12.Ball segment
V \u003d πh 2 (R-1/3h) \u003d πh/6 (h 2 + 3r 2)
S. SIDE \u003d 2 πrh \u003d π (r 2 + h 2); P \u003d π (2R 2 + h 2)
13.Ball layer
V \u003d 1/6 πh 3 + 1/2 π (r 2 + h 2) · H;
S. SIDE \u003d 2 π · R · H
14. Ball sector:
V \u003d 2/3 πr 2 h ’where h’ is the height of the segment containing in the sector
- Formula of the roots of the square equation
(A a a a azeals, b≥0)
(a≥0)
aX 2 + bx + c \u003d 0 (a ≠ 0)
If d \u003d 0, then x \u003d -b/2a (d \u003d b 2-4ac)
If d ›0, then x 1,2 \u003d -b ± /2a
Vieta theorem
x 1 + x 2 \u003d -b/a
x 1 · X 2 \u003d C/A
- Arithmetic progression
a n.+1\u003d a n. + D, where n is a natural number
d is the difference in progression;
a n. \u003d a one + (n-1) · D-formula of the nth penis
Sum N.members
S. n. \u003d (a one + a N. )/2) n
S. n. \u003d ((2A one + (n-1) d)/2) n
- Radius of the described circle near the polygon
R \u003d A/ 2 SIN 180/ N
- The radius of the inscribed circle
r \u003d A/ 2 TG 180/ N
Circle
L \u003d 2 πr s \u003d πr 2
- The area of \u200b\u200bthe cone
S. SIDE \u003d πrl
S. Con \u003d πr (l+r)
Tangent angle- The attitude of the opposing leg to the adjacent. Kotangenes - on the contrary.
Cheatheller in profile mathematics
Scarling in specialized mathematics:
- F-lla of a half argument.
sin² ern /2 \u003d (1 - cos ern) /2
cos² ern /2 \u003d (1 + cosement) /2
tG ern /2 \u003d sinorn /(1 + cosement) \u003d (1-cos ern) /sin isp
Μ + 2 n, n z
- F-li transformation of the amount into the production.
sin x + sin y \u003d 2 sin ((x + y)/2) cos ((x-y)/2)
sin x-sin y \u003d 2 cos ((x+y)/2) sin ((x-y)/2)
cOS X + COS Y \u003d 2COS (X + Y)/2 COS (X-Y)/2
cOS X -COS Y \u003d -2SIN (X+Y)/2 SIN (X -Y)/2
- Formulas preobr. production. In the amount
sin x sin y \u003d ½ (cos (x-y)-cos (x+y))
cos x cos y \u003d ½ (cos (x-y)+ cos (x+ y))
sin x cos y \u003d ½ (sin (x-y)+ sin (x+ y))
- The ratio between functions
sin x \u003d (2 tg x/2)/(1+tg 2x/2)
cOS X \u003d (1-TG 2 2/x)/(1+ tg² x/2)
sin2x \u003d (2TGX)/(1+TG 2x)
sin² ern \u003d 1 /(1+ctg² mon) \u003d tg² mics /(1+tg² isp)
cos² ern \u003d 1 / (1+tg² isp) \u003d ctg² √ / (1+ctg² isp)
cTG2 piped
sin3 pipes \u003d 3sinorn -4sin³ √ \u003d 3cos² ern sinorn -sin³
cOS3P \u003d 4COS³ Š -3 COSP \u003d COS³ Š -3COSPorn ML
tG3MER \u003d (3TGHPER -TG³ M)/(1-3TG² M)
cTG3P \u003d (CTG³ ispg mill)/(3CTG² isp)
sin ern /2 \u003d ((1-cosement) /2)
cOS ern /2 \u003d ((1+COSP) /2)
tGHP /2 \u003d ((1-COSP) /(1+COSP)) \u003d
sinorn /(1+cosement) \u003d (1-cosement) /sinising
ctg mill /2 \u003d ((1+COSM) /(1-cosement)) \u003d
sinorn /(1-cosising) \u003d (1+cosement) /sinising
sin (arcsin isp) \u003d ₽
cOS (arccos isp) \u003d ₽
tg (arctg isp) \u003d ₽
cTG (arcctg isp) \u003d ₽
arcsin (sinoff) \u003d ern; Μ [- /2; /2]
arccos (cos isp) \u003d Š; [0; ]
arctg (tg isp) \u003d √; Μ [- /2; /2]
arcctg (ctg isp) \u003d ₽; [0; ]
arcsin (sin )=
Isp - 2 k; [- /2 +2 k; /2 +2 k] (2k+1) - isp; § [ /2+2 k; 3 /2+2 k]arccos (COS ) =
Μ -2 k; Μ [2 K; (2k+1) ] 2 k-pan; § [(2K-1) ; 2 k]arctg (TG )= — K.
Μ (- /2 + k; /2 + k)
arcctg (CTG ) = — K.
Μ ( k; (k+1) )
arcsinorn \u003d -Arcsin (—oft) \u003d /2-arcosoff \u003d
\u003d arctg ern / (1-pan ²)
arccosoff \u003d -arccos (-M) \u003d /2-assin ern \u003d
\u003d arc ctg pipes / (1-pan ²)
arctgovern \u003d -arctg (-M) \u003d /2 -arcctg pan \u003d
\u003d arcsin ern / (1+ ²)
arc ctg √ \u003d -arc cctg (—off) \u003d
\u003d arc cos mon / (1-pan ²)
arctg ern \u003d arc ctg1/√ \u003d
\u003d arcsin ern / (1+ ²) \u003d arccos1 / (1+isp)
arcsin ern + arccos \u003d /2
arcctg ern + arctg pipes \u003d /2
- Indicative equations.
Inequality: if a f (x)›(‹) A a (h)
A ›1, the sign does not change. A ‹1, then the sign is changing.Logarithms: inequalities:
log af (x) ›(‹) log a (x)
1. a ›1, then: f (x)› 0
(x) ›0
f (x) › (x)
2. 0 ‹a‹ 1, then: \u003d "" f (x) \u003d "" ›0
(x) ›0
f (x) ‹ (x)
3. log f (x) (x) \u003d a
ODZ: (x) ›0
f (x) ›0
f (x) 1
Trigonometry:
1. Decomposition into multipliers:
sin 2x - 3 cos x \u003d 0
2sin x cos x -3 cos x \u003d 0
cos X (2 sin x - 3) \u003d 0
2. Solutions by replacement
3.Sin² x - sin 2x + 3 cos² x \u003d 2
sin² x - 2 sin x cos x + 3 cos ² x \u003d 2 sin² x + cos² x
Then it is written if sin x \u003d 0, then cos x \u003d 0,
and this is impossible, \u003d ›can be divided into COS X
- Trigonometric nervous:
sin m
2 K+ 1 = = 2+ 2 K.
2 K+ 2 = = ( 1+2 )+ 2 K.
Example:
I cos ( /8+x) ‹ 3/2
k + 5 /6 /8 + x ‹7 /6 + 2 K
2 k+ 17 /24 ‹x /24+ 2 k ;;;;
II sin ern \u003d 1/2
2 k + 5 /6 \u003d √ \u003d 13 /6 + 2 K
cOS (= ) m
2 K + 1 < < 2+2 K.
2 K+ 2< < ( 1+2 ) + 2 K.
cos mon - 2/2
2 k +5 /4 \u003d √ \u003d 11 /4 +2 K
tG (= ) m
K+ Arctg M= = Arctg M + K.
cTG (= ) m
K+Arcctg M ‹ < + K.
- Integrals:
x n.dX \u003d x n+1/(n + 1) + C
a xdX \u003d AX/LN A + C
e x DX \u003d E x + C.
cos x dx \u003d sin x + cos
sin x dx \u003d - cos x + c
1/x dx \u003d ln | x | + C.
1/cos² x \u003d tg x + c
1/sin² x \u003d - ctg x + c
1/ (1-x²) dx \u003d arcsin x +c
1/ (1-x²) dx \u003d-arccos x +c
1/1 + x² dx \u003d arctg x + c
1/1 + x² dx \u003d - arcctg x + c
Formulas in mathematics - cheat sheet in pictures
Formulas in mathematics - cheat sheet in pictures: