Shoppers in mathematics - for an exam in mathematics, to prepare for the exam

Shoppers in mathematics - for an exam in mathematics, to prepare for the exam

Mathematics cheat sheets that will help to pass exams without any problems.

Examination cheat sheets

Examination cheat sheets:

  • Geometry
Trigonometry: sinA=ac.sina \u003d AC    cOSA=b.c.cOSA \u003d BC
tGA=sinAcOSA=ab.tGA \u003d sinacosa \u003d AB
Cosine theorem:

c.2=a2+b.22ab.cOSC.c2 \u003d

a2+B2-2AB⋅COSC

Sinus theorem:

asinA=b.sinB.=c.sinC.=2Rasina \u003d bsinb

\u003d CSINC\u003d 2r

where r is the radius of the described circle
The equation of the circle:

(xx0)2+(yy0)2=R2(X-X0) 2+ (y-y0) 2

\u003d R2

where (x0;y0)(x0; y0) Coordinates of the center of the circle
The ratio of inscribed and central angles: β=α2=α2β \u003d α2 \u003d ∪α2
The described circle, triangle: R=ab.c.4S.R \u003d ABC4S See also the theorem of sinuses. The center lies at the intersection of median perpendiculars.
Inscribed circle, triangle: r=S.p.r \u003d SP where P is the semi -perimeter of the polygon. The center lies at the intersection of bisector.
The described circle, quadrangle: α+γ=β+δ=180α+γ \u003d β+δ \u003d 180∘
Inscribed circle, quadrangle: a+c.=b.+d.a+C \u003d B+D
Bisectress property: ax=b.yaX \u003d by
The intersecting chords theorem: AMB.M=C.MD.MAm⋅bm \u003d cm⋅dm These theorems must be able to display
The coal theorem between the tangent and the chord: α=12AB.α \u003d 12∪AB
The theorem about the tangent and secant: C.M2=AMB.MCM2 \u003d am⋅bm
Tangular segments theorem: AB.=AC.AB \u003d AC
  • Square of figures:
Circle: S.=πr2S \u003d πR2
Triangle: S.=12ahS \u003d 12AH
Parallelogram: S.=ahS \u003d AH
Four -year -old: S.=12d.1d.2sinφS \u003d 12D1D2Sinφ At the rhombus φ=90φ \u003d 90∘
Trapezius: S.=a+b.2hS \u003d A+B2⋅H
  • Probability
Probability Events a: P.(A)=mn.P (a) \u003d mn m is the number of favorable events
n - total number of events
Events occur a and b occur simultaneously AB.A⋅b
Independent developments:

P.(AB.)=P.(A)P.(B.)P (a⋅b) \u003d

P (a) ⋅p (b)

When the probability of one event (a) does not depend on another event (b)
Dependent developments:

P.(AB.)=P.(A)P.(B.A)P (a⋅b) \u003d

P (a) ⋅p (b∣a)

P.(B.A)P (b∣a) - the probability of event B, provided that event a has occurred
Is happening or event a, or B. A+B.A+b
Inexpressible developments:

P.(A+B.)=P.(A)+P.(B.)P (a+b) \u003d

P (a)+p (b)

When the onset of both events is impossible at the same time, i.e. P.(AB.)=0P (a⋅b) \u003d 0
Joint developments:

P.(A+B.)=P.(A)+P.(B.)P.(AB.)P (a+b)

=P (a)+p (b) -p (a⋅b)

When both events can come at the same time
  • Functions graphs, functions studied at school
The name of the function Formula of function Function schedule The name of the graphics Note
Linear y \u003d kx
Linear function schedule - direct line
Straight Linear dependence - direct proportionality y \u003d kx,
where k. ≠ 0 - proportionality coefficient.
Linear y =  kX +  b.
Linear function schedule - direct line
Straight Linear dependence:
coefficients k. and b. - Any real numbers.
(k. \u003d 0.5, b. \u003d 1)
Quadratic y \u003d x2
Parabola schedule
Parabola Quadratic dependence:
Symmetric parabola with the top at the beginning of the coordinates.
Quadratic y \u003d xn.
Square function schedule - parabola
Parabola Quadratic dependence:
n. - Natural even number ›1
Steep y \u003d xn.
Schedule cubic parabola
Cuban parabola Odd degree:
n. - natural odd number ›1
Steep y \u003d x1/2
Function schedule - square root x
Function schedule
y = √ x
Steep dependence ( x1/2 = √ x).
Steep y \u003d k/x
Return proportional schedule - hyperbole
Hyperbola Case for a negative degree
(1/x \u003d x-1).
Opend-proportional dependence.
(k. \u003d 1)
Indicative y =  a x
A schedule of indicative function Indicative function for a \u003e one.
Indicative y \u003d a x
A schedule of indicative function
A schedule of indicative function Indicative function for 0 ‹ a \u003c one.
Logarithmic y \u003d log ax
Logarithmic function schedule - logarithmic
Schedule of logarithmic function Logarithmic function: a \u003e one.
Logarithmic y \u003d log ax
Logarithmic function schedule - logarithmic
Schedule of logarithmic function Logarithmic function: 0 ‹ a \u003c one.
Sinus y \u003d sin x
Graph of trigonometric function - sinusoid
Sinusoid Trigonometric function sinus.
Cosine y \u003d cos x
The schedule of trigonometric function - Cosinusoid
Cosinusoid The trigonometric function is cosine.
Tangent y \u003d tg x
Trigonometric function schedule - tangensoid
Tangensoid Trigonometric function of tangent.
Cotangent y \u003d CTG x
Graph of trigonometric function - Cotangensoid
Kotangensoid Trigonometric function of cotangenes.
  • Formulas of the work.

multiplication

division

division

The formula of work

What about work)

A \u003d V T

V (performance)

V \u003d a: t

t (time)

t \u003d a: v

The formula of mass

M (total mass)

M \u003d m n

M (mass of one subject)

m \u003d m: n

n (quantity)

n \u003d m: m

Formula of value

C (cost)

C \u003d and n

what about the price)

a \u003d C: N

n (quantity)

n \u003d C: a

The formula of the path

S (distance, path)

S \u003d V T

V (speed)

V \u003d s: t

t (time)

t \u003d s: v

Formula of the area

S (area)

S \u003d A B

S \u003d A A

a (length)

a \u003d S: B

a \u003d S: A

b (width)

b \u003d s: a

a \u003d S: A

  • Division formula with residual a \u003d b c + r,r B.
  • Perimeter formula p \u003d a 4 p \u003d (a + b) 2
  • a \u003d p: 4 (side of the square) a \u003d (p - b 2): 2 (side of the rectangle)
  • Volume formula:
  • - rectangular parallelepiped v \u003d a b C (a- day, b-width, c- height)
  • a \u003d v: (a b) (side of a rectangular parallelepiped)
  • - Cuba v \u003d a a a a a
  • a \u003d v: (a a) (side of the cube)

Trigonometric formulas for high school students

  • Trigonometric functions of one angle

  • Trigonometric functions of the amount and difference of two angles


  • Trigonometric functions of the double angle

Formulas of lowering degrees for squares of trigonometric functions

  • Formulas of lowering degree for cubes of sinus and cosinea
  • Tangens expression through a sinus and a double angle mowing
  • Transformation of the amount of trigonometric functions into a work
  • Transformation of the work of trigonometric functions in the amount
  • Expression of trigonometric functions through a half angle tangent
  • Trigonometric functions of the triple angle

Mathematics cheat sheets to prepare for the exam

Mathematics cheat sheets to prepare for the exam:

  • Formulas of abbreviated multiplication

(a+b) 2 \u003d a 2 + 2AB + B 2

(a-b) 2 \u003d a 2 - 2AB + B 2

a 2 - b 2 \u003d (a-b) (a+b)

a 3 - b 3 \u003d (a-b) (a 2 + ab + b 2)

a 3 + b 3 \u003d (a+b) (a 2 - AB + B 2)

(a + b) 3 \u003d a 3 + 3a 2b+ 3AB 2+ b 3

(a - b) 3 \u003d a 3 - 3a 2b+ 3AB 2- b 3

  • The properties of degrees

a 0 \u003d 1 (a ≠ 0)

a m/N \u003d (a≥0, n ε n, m ε n)

a - R \u003d 1/ A r (a ›0, r ε q)

a m · A n. \u003d a m + N

a m : a n. \u003d a m - N (a ≠ 0)

(a m) N. \u003d a mn

(AB) N. \u003d a n. B. n.

(a/b) n. \u003d a N./ b N.

  • The first -shaped

If f ’(x) \u003d f (x), then f (x) - the primary

for f (x)

Functionf(x) \u003d PrimaryF(x)

k \u003d kx + c

x n. \u003d x n.+1/n + 1 + C

1/x \u003d ln | x | + C.

e. x \u003d E x + C.

a x \u003d a x/ ln a + c

1/√x \u003d 2√x + c

cos x \u003d sin x + c

1/ sin 2 x \u003d - ctg x + c

1/ cos 2 x \u003d tg x + c

sin x \u003d - cos x + c

1/ x 2 \u003d - 1/x

  • Geometric progression

b.  n.+1 \u003d b n. · Q, where n ε n

q - denominator of progression

b.  n. \u003d b 1 · Q.  n. - one -N-th member of the progression

Sumn-s members

S.  n. \u003d (b N. Q - b one )/Q-1

S.  n. \u003d b one (Q. N. -1)/Q-1

  • Module

| A | \u003d a, if a favor

-a, if a ‹0

  • Formulas COSand sin

sin (-x) \u003d -sin x

cos (-x) \u003d cos x

sin (x + π) \u003d -sin x

cos (x + π) \u003d -cos x

sin (x + 2πk) \u003d sin x

cOS (x + 2πk) \u003d COS X

sin (x + π/2) \u003d cos x

  • Volumes and surfaces of bodies

1. Prism, straight or inclined, parallelepipedV \u003d s · h

2. Direct prism S. SIDE\u003d p · h, p is the perimeter or circumference length

3. The parallelepiped is rectangular

V \u003d a · b · c; P \u003d 2 (a · b + b · c + c · a)

P is the full surface

4. Cube: V \u003d a 3 ; P \u003d 6 A 2

5.  Pyramid, correct and wrong.

S \u003d 1/3 S · H; S - base area

6.The pyramid is correct S \u003d 1/2 P · A

A - Apofem of the correct pyramid

7. Circular cylinder V \u003d s · h \u003d πr 2h

8. Circular cylinder: S. SIDE \u003d 2 πrh

9. Circular cone: V \u003d 1/3 sh \u003d 1/3 πr 2h

ten. Circular cone:S. SIDE \u003d 1/2 pl \u003d πrl

  • Trigonometric equations

sin x \u003d 0, x \u003d πn

sin x \u003d 1, x \u003d π/2 + 2 πn

sin x \u003d -1, x \u003d -π/2 + 2 πn

cos x \u003d 0, x \u003d π/2 + 2 πn

cos x \u003d 1, x \u003d 2πn

cos x \u003d -1, x \u003d π + 2 πn

  • Addition Theorems

cos (x +y) \u003d cosx · cosy - sinx · siny

cos (x -y) \u003d cosx · cosy + sinx · siny

sin (x + y) \u003d sinx · cosy + cosx · siny

sin (x -y) \u003d sinx · cosy -cosx · siny

tg (x ± y) \u003d tg x ± tg y/ 1 + tg x · tg y

ctg (x ± y) \u003d tg x + tg y/ 1 ± tg x · tg y

sin x ± sin y \u003d 2 cos (x ± y/2) · cos (x +y/2)

cOS X ± COSY \u003d -2 sin (x ± y/2) · sin (x +y/2)

1 + cos 2x \u003d 2 cos 2 x; cOS 2x \u003d 1+cos2x/2

1 - cos 2x \u003d 2 sin 2 x; sin 2x \u003d 1- COS2X/2

6.Trapezius

a, b - bases; h - height, c - the middle line s \u003d (a+b/2) · h \u003d c · h

7.Square

a - side, d - diagonal s \u003d a 2 \u003d D 2/2

8. Rhombus

a - side, D 1, d 2 - diagonals, α is the angle between them s \u003d D 1d. 2/2 \u003d A 2sinα

9. The correct hexagon

a - side s \u003d (3√3/2) a 2

ten.A circle

S \u003d (l/2) r \u003d πr 2 \u003d πd 2/4

eleven.Sector

S \u003d (πr 2/360) α

  • Differentiation rules

(f (x) + g (x) ’\u003d f’ (x) + g ’(x)

(k (f (x) ’\u003d kf’ (x)

(f (x) g (x) ’\u003d f’ (x) g (x) + f (x) · g ’(x)

(f (x)/g (x) ’\u003d (f’ (x) g (x) - f (x) · g ’(x))/g 2 (x)

(X n.) ’\u003d Nx n-1

(tg x) ’\u003d 1/ cos 2 x

(ctg x) ’\u003d - 1/ sin 2 x

(f (kx + m)) ’\u003d kf’ (kx + m)

  • Tangent equation to function graphics

y \u003d f ’(a) (x-a) + f (a)

  • SquareS. figures limited by straightx=ax=b.

S \u003d ∫ (f (x) - g (x)) dx

  • Newtonian formula

ab. f (x) dx \u003d f (b) - f (a)

t  π/4  π/2  3π/4  π  cOS √2/2 0 --√2/2 1 sin √2/2 1 √2/2 0 t  5π/4  3π/2  7π/4    cOS --√2/2 0 √2/2 1 sin --√2/2 -1 --√2/2 0 t  0  π/6  π/4  π/3  tG 0 √3/3 1 √3 cTG - √3 1 √3/3
in x \u003d b x \u003d (-1) n. arcsin b + πn

cos x \u003d b x \u003d ± arcos b + 2 πn

tg x \u003d b x \u003d arctg b + πn

ctg x \u003d b x \u003d arcctg b + πn

  • Theorem sinusov: a/sin α \u003d b/sin β \u003d c/sin γ \u003d 2r
  • Cosine theorem: With 2\u003d a 2+b 2-2ab cos y
  • Uncertain integrals

∫ dx \u003d x + c

∫ x n. DX \u003d (x  n. +1/n + 1) + C

∫ dx/x 2 \u003d -1/x + c

∫ dx/√x \u003d 2√x + c

∫ (kx + b) \u003d 1/k f (kx + b)

∫ sin x dx \u003d - cos x + c

∫ cos x dx \u003d sin x + c

∫ dx/sin 2 x \u003d -ctg + c

∫ dx/cos 2 x \u003d tg + c

∫ x r DX \u003d x R+1/r + 1 + C

  • Logarithms

1. LOG a A \u003d 1

2. log a 1 \u003d 0

3. log a (b n.) \u003d n log a B.

4. log An. b \u003d 1/n log a B.

5. log a B \u003d log C. B/ log c. a

6. log a B \u003d 1/ log B. a

Degree  0  30  45  60  sin 0 1/2 √2/2 √3/2 cOS 1 √3/2 √2/2 1/2 tG 0 √3/3 1 √3 t  π/6  π/3 2π/3 5π/6 cOS √3/2 1/2 -1/2 --√3/2 sin 1/2 √3/2 √3/2 1/2 90  120  135  150  180 1 √3/2 √2/2 1/2 0 0 -1/2 -√2/2 --√3/2 -1 - -√3 -1 √3/3 0 t  7π/6  4π/3  5π/3  11π/6  cOS --√3/2 -1/2 1/2 √3/2 sin -1/2 --√3/2 --√3/2 -1/2

  • Double argument formulas

cOS 2X \u003d COS 2x - sin 2 x \u003d 2 cos 2 x -1 \u003d 1 -2 sin 2 x \u003d 1 - tg 2 X/1 + TG 2 x

sin 2x \u003d 2 sin x · cos x \u003d 2 tg x/ 1 + tg 2x

tG 2X \u003d 2 TG X/ 1 - TG 2 x

cTG 2x \u003d CTG 2 X - 1/2 CTG X

sin 3x \u003d 3 sin x - 4 sin 3 x

cOS 3X \u003d 4 COS 3 x - 3 cos x

tG 3X \u003d 3 TG X - TG 3 X / 1 - 3 TG 2 x

sin s cos t \u003d (sin (s+t)+sin (s+t))/2

sin s sin t \u003d (cos (s-t)-cos (s+t))/2

cOS S COS T \u003d (COS (S + T) + COS (S-T))/2

  • Differentiation formulas

c ’\u003d 0 ()’ \u003d 1/2

x ’\u003d 1 (sin x)’ \u003d cos x

(kx + m) ’\u003d k (cos x)’ \u003d - sin x

(1/x) ’\u003d - (1/x 2) (ln x) ’\u003d 1/x

(E. x) ’\u003d E x; (X n.) ’\u003d Nx N-1; (log a x) ’\u003d 1/x ln a

  • Square of flat figures

1. A rectangular triangle

S \u003d 1/2 a · b (a, b - cuttings)

2. An isosceles triangle

S \u003d (A/2) · √ B 2 - a 2/4

3. An equilateral triangle

S \u003d (A 2/4) · √3 (a - side)

four.Arbitrary triangle

a, b, c - sides, a - base, h - height, a, b, c - angles lying against the sides; p \u003d (a+b+c)/2

S \u003d 1/2 A · H \u003d 1/2 A 2b sin c \u003d

a 2sinb sinc/2 sin a \u003d √p (p-a) (p-b) (p-c)

5. Parallelogram

a, b - sides, α - one of the corners; h - height s \u003d a · h \u003d a · b · sin α

cos (x + π/2) \u003d -sin x

  • Formulas TGand CTG

tg x \u003d sin x/ cos x; Ctg x \u003d cos x/sin x

tg (-x) \u003d-tg x

cTG (-x) \u003d-ctg x

tg (x + πk) \u003d tg x

ctg (x + πk) \u003d ctg x

tg (x ± π) \u003d ± tg x

ctg (x ± π) \u003d ± ctg x

tg (x + π/2) \u003d - ctg x

cTG (x + π/2) \u003d - tg x

sin 2 X + COS 2 x \u003d 1

tg x · ctg x \u003d 1

1 + TG 2 x \u003d 1/ cos 2 x

1 + CTG 2 x \u003d 1/ sin 2x

tG 2 (x/ 2) \u003d 1 - cos x/ 1 + cos x

cOS 2 (x/ 2) \u003d 1 + cos x/ 2

sin 2 (x/ 2) \u003d 1 - cos x/ 2

eleven.Ball: V \u003d 4/3 πr 3 \u003d 1/6 πd 3

P \u003d 4 πr 2 \u003d πd 2

12.Ball segment

V \u003d πh 2 (R-1/3h) \u003d πh/6 (h 2 + 3r 2)

S. SIDE \u003d 2 πrh \u003d π (r 2 + h 2); P \u003d π (2R 2 + h 2)

13.Ball layer

V \u003d 1/6 πh 3 + 1/2 π (r 2 + h 2) · H;

S. SIDE \u003d 2 π · R · H

14. Ball sector:

V \u003d 2/3 πr 2 h ’where h’ is the height of the segment containing in the sector

  • Formula of the roots of the square equation

(A a a a azeals, b≥0)

(a≥0)

aX 2 + bx + c \u003d 0 (a ≠ 0)

If d \u003d 0, then x \u003d -b/2a (d \u003d b 2-4ac)

If d ›0, then x 1,2 \u003d -b ± /2a

Vieta theorem

x 1 + x 2 \u003d -b/a

x 1 · X 2 \u003d C/A

  • Arithmetic progression

a n.+1\u003d a  n. + D, where n is a natural number

d is the difference in progression;

a n. \u003d a one + (n-1) · D-formula of the nth penis

Sum N.members

S.  n. \u003d (a one + a N. )/2) n

S.  n. \u003d ((2A one + (n-1) d)/2) n

  • Radius of the described circle near the polygon

R \u003d A/ 2 SIN 180/ N

  • The radius of the inscribed circle

r \u003d A/ 2 TG 180/ N

Circle

L \u003d 2 πr s \u003d πr 2

  • The area of \u200b\u200bthe cone

S. SIDE \u003d πrl

S. Con \u003d πr (l+r)

Tangent angle- The attitude of the opposing leg to the adjacent. Kotangenes - on the contrary.

Cheatheller in profile mathematics

Scarling in specialized mathematics:

  • F-lla of a half argument.

sin² ern /2 \u003d (1 - cos ern) /2

cos² ern /2 \u003d (1 + cosement) /2

tG ern /2 \u003d sinorn /(1 + cosement) \u003d (1-cos ern) /sin isp

Μ   + 2 n, n  z

  • F-li transformation of the amount into the production.

sin x + sin y \u003d 2 sin ((x + y)/2) cos ((x-y)/2)

sin x-sin y \u003d 2 cos ((x+y)/2) sin ((x-y)/2)

cOS X + COS Y \u003d 2COS (X + Y)/2 COS (X-Y)/2

cOS X -COS Y \u003d -2SIN (X+Y)/2 SIN (X -Y)/2

  • Formulas preobr. production. In the amount

sin x sin y \u003d ½ (cos (x-y)-cos (x+y))

cos x cos y \u003d ½ (cos (x-y)+ cos (x+ y))

sin x cos y \u003d ½ (sin (x-y)+ sin (x+ y))

  • The ratio between functions

sin x \u003d (2 tg x/2)/(1+tg 2x/2)

cOS X \u003d (1-TG 2 2/x)/(1+ tg² x/2)

sin2x \u003d (2TGX)/(1+TG 2x)

sin² ern \u003d 1 /(1+ctg² mon) \u003d tg² mics /(1+tg² isp)

cos² ern \u003d 1 / (1+tg² isp) \u003d ctg² √ / (1+ctg² isp)

cTG2 piped

sin3 pipes \u003d 3sinorn -4sin³ √ \u003d 3cos² ern sinorn -sin³

cOS3P \u003d 4COS³ Š -3 COSP \u003d COS³ Š -3COSPorn ML

tG3MER \u003d (3TGHPER -TG³ M)/(1-3TG² M)

cTG3P \u003d (CTG³ ispg mill)/(3CTG² isp)

sin ern /2 \u003d   ((1-cosement) /2)

cOS ern /2 \u003d   ((1+COSP) /2)

tGHP /2 \u003d   ((1-COSP) /(1+COSP)) \u003d

sinorn /(1+cosement) \u003d (1-cosement) /sinising

ctg mill /2 \u003d   ((1+COSM) /(1-cosement)) \u003d

sinorn /(1-cosising) \u003d (1+cosement) /sinising

sin (arcsin isp) \u003d ₽

cOS (arccos isp) \u003d ₽

tg (arctg isp) \u003d ₽

cTG (arcctg isp) \u003d ₽

arcsin (sinoff) \u003d ern; Μ  [- /2;  /2]

arccos (cos isp) \u003d Š;   [0; ]

arctg (tg isp) \u003d √; Μ  [- /2;  /2]

arcctg (ctg isp) \u003d ₽;   [0; ]

arcsin (sin )=

1
Isp - 2 k;   [- /2 +2 k;  /2 +2 k]

2
(2k+1)  - isp; § [ /2+2 k; 3 /2+2 k]

arccos (COS ) =

1
Μ -2 k; Μ  [2 K; (2k+1) ]

2
2 k-pan; § [(2K-1) ; 2 k]

arctg (TG )=  — K.

Μ  (- /2 + k;  /2 + k)

arcctg (CTG ) =  — K.

Μ  ( k; (k+1) )

arcsinorn \u003d -Arcsin (—oft) \u003d  /2-arcosoff \u003d

\u003d arctg ern / (1-pan ²)

arccosoff \u003d  -arccos (-M) \u003d  /2-assin ern \u003d

\u003d arc ctg pipes / (1-pan ²)

arctgovern \u003d -arctg (-M) \u003d  /2 -arcctg pan \u003d

\u003d arcsin ern / (1+ ²)

arc ctg √ \u003d  -arc cctg (—off) \u003d

\u003d arc cos mon / (1-pan ²)

arctg ern \u003d arc ctg1/√ \u003d

\u003d arcsin ern / (1+ ²) \u003d arccos1 / (1+isp)

arcsin ern + arccos \u003d  /2

arcctg ern + arctg pipes \u003d  /2

  • Indicative equations.

Inequality: if a f (x)›(‹) A a (h)

1
A ›1, the sign does not change.

2
A ‹1, then the sign is changing.

Logarithms: inequalities:

log af (x) ›(‹) log a  (x)

1. a ›1, then: f (x)› 0

 (x) ›0

f (x) › (x)

2. 0 ‹a‹ 1, then: \u003d "" f (x) \u003d "" ›0

 (x) ›0

f (x) ‹ (x)

3. log f (x)  (x) \u003d a

ODZ:  (x) ›0

f (x) ›0

f (x)  1

Trigonometry:

1. Decomposition into multipliers:

sin 2x -  3 cos x \u003d 0

2sin x cos x -3 cos x \u003d 0

cos X (2 sin x -  3) \u003d 0

2. Solutions by replacement

3.Sin² x - sin 2x + 3 cos² x \u003d 2

sin² x - 2 sin x cos x + 3 cos ² x \u003d 2 sin² x + cos² x

Then it is written if sin x \u003d 0, then cos x \u003d 0,

and this is impossible, \u003d ›can be divided into COS X

  • Trigonometric nervous:

sin  m

2 K+ 1 =  =  2+ 2 K.

2 K+ 2 =  = ( 1+2 )+ 2 K.

Example:

I cos ( /8+x) ‹ 3/2

 k + 5 /6  /8 + x ‹7 /6 + 2 K

2 k+ 17 /24 ‹x  /24+ 2 k ;;;;

II sin ern \u003d 1/2

2 k + 5 /6 \u003d √ \u003d 13 /6 + 2 K

cOS  (= ) m

2 K + 1 <  <  2+2 K.

2 K+ 2 < ( 1+2 ) + 2 K.

cos mon  -  2/2

2 k +5 /4 \u003d √ \u003d 11 /4 +2 K

tG  (= ) m

K+ Arctg M=  = Arctg M + K.

cTG (= ) m

K+Arcctg M ‹ <  + K.

  • Integrals:

 x n.dX \u003d x n+1/(n + 1) + C

 a xdX \u003d AX/LN A + C

 e x DX \u003d E x + C.

 cos x dx \u003d sin x + cos

 sin x dx \u003d - cos x + c

 1/x dx \u003d ln | x | + C.

 1/cos² x \u003d tg x + c

 1/sin² x \u003d - ctg x + c

 1/ (1-x²) dx \u003d arcsin x +c

 1/ (1-x²) dx \u003d-arccos x +c

 1/1 + x² dx \u003d arctg x + c

 1/1 + x² dx \u003d - arcctg x + c

Formulas in mathematics - cheat sheet in pictures

Formulas in mathematics - cheat sheet in pictures:

To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons
To help the schoolchildren in the lessons

Video: cheat sheet on the first part of the profile exam

 
Read also on our website:


Evaluate the article

Add a comment

Your e-mail will not be published. Mandatory fields are marked *