Článok bude užitočný pre školákov a budúcich žiadateľov, ktorí sa pripravujú na skúšku.
Spokojnosť
- Vzorec objemu lopty cez polomer: Význam
- Vzorec objemu gule cez priemer: hodnota
- Príklady výpočtu objemu gule cez polomer a priemer lopty: Opis
- Vzorec celej povrchu gule, guľa cez polomer: Význam
- Vzorec úplného povrchu gule, guľa cez priemer: hodnota
- Príklady výpočtu povrchovej plochy, gule gule, cez polomer a priemer lopty: Opis
- Ako nájsť objem lopty cez povrchovú plochu gule, guľa: príklad riešenia problému
- Video: Používajte matematiku. Objem a plocha povrchu telies rotácie.
Vzorec objemu lopty cez polomer: Význam
Objem gule V sa vypočíta vzorcom (pozri nižšie), kde r je polomer lopty, číslo „pi“ - π je matematická konštanta, ≈ 3,14.
Tento vzorec je základňou!
Vzorec objemu gule cez priemer: hodnota
- Použite základný vzorec: v \u003d 4/3*π*r³.
- Polomer R je priemer ½ D alebo r \u003d d/2.
- Preto: v \u003d 4/3*π*r³ → V \u003d (4π/3)*(d/2) ³ → V \u003d (4π/3)*(dft/8) → V \u003d πD.³/6.
Alebo
Príklady výpočtu objemu gule cez polomer a priemer lopty: Opis
Úloha 1.
Polomer lopty je 10 cm. Nájdite jeho objem.
Úloha 2.
Priemer gule je 10 cm. Nájdite jeho objem.
Úloha 3.
Pomer priemeru mesiaca a priemer Zeme 1: 4. Koľkokrát je objem Zeme väčší ako objem mesiaca?
Riešenie:
Odpoveď: 64 krát.
Dôležitý: Existuje veľa online kalkulačiek, ktoré vám umožňujú rýchlo nájsť danú hodnotu. Napríklad služba Webmath.
Vzorec celej povrchu gule, guľa cez polomer: Význam
Povrchová plocha gule/gule sa vypočíta podľa vzorca (pozri nižšie), kde r je polomer lopty, číslo „pi“ - π je matematická konštanta, ≈ 3,14.
Tento vzorec je základňou!
Vzorec úplného povrchu gule, guľa cez priemer: hodnota
- Použite základný vzorec: S \u003d 4*π*R².
- Polomer R je priemer ½ D alebo r \u003d d/2.
- Odtiaľ: S \u003d 4*π*R² → S \u003d 4*π*(D/2) ² → S \u003d (4π)*(D²/4) → S \u003d (4πd²)/4 → S \u003d πD.².
Alebo
Príklady výpočtu povrchovej plochy, gule gule, cez polomer a priemer lopty: Opis
Úloha 4.
Úloha 5.
Úloha 6.
Ako nájsť objem lopty cez povrchovú plochu gule, guľa: príklad riešenia problému
Úloha 7.
Úloha 8.